Analyzing the global warming potential of the production and utilization of lithium-ion batteries with nickel-manganese-cobalt cathode chemistries in European Gigafactories
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129622
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
- Fusco Rovai, Fernando & Regina da Cal Seixas, Sônia & Keutenedjian Mady, Carlos Eduardo, 2023. "Regional energy policies for electrifying car fleets," Energy, Elsevier, vol. 278(PA).
- Sharma, Ashish & Strezov, Vladimir, 2017. "Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies," Energy, Elsevier, vol. 133(C), pages 1132-1141.
- Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).
- Peng, Tianduo & Ren, Lei & Ou, Xunmin, 2023. "Development and application of life-cycle energy consumption and carbon footprint analysis model for passenger vehicles in China," Energy, Elsevier, vol. 282(C).
- Patil, V. & Shastry, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis," Energy, Elsevier, vol. 96(C), pages 699-712.
- García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Soria Alcaide, Rafael, 2023. "Carbon footprint of battery electric vehicles considering average and marginal electricity mix," Energy, Elsevier, vol. 268(C).
- Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
- Li, Mengyu & Zhang, Xiongwen & Li, Guojun, 2016. "A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis," Energy, Elsevier, vol. 94(C), pages 693-704.
- Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
- Philip Cooke, 2020. "Gigafactory Logistics in Space and Time: Tesla’s Fourth Gigafactory and Its Rivals," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
- Sacchi, R. & Bauer, C. & Cox, B. & Mutel, C., 2022. "When, where and how can the electrification of passenger cars reduce greenhouse gas emissions?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
- Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
- García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Soria Alcaide, Rafael, 2023. "Carbon footprint of battery electric vehicles considering average and marginal electricity mix," Energy, Elsevier, vol. 268(C).
- Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
- Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
- Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
- Michael Samsu Koroma & Nils Brown & Giuseppe Cardellini & Maarten Messagie, 2020. "Prospective Environmental Impacts of Passenger Cars under Different Energy and Steel Production Scenarios," Energies, MDPI, vol. 13(23), pages 1-17, November.
- Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
- Daniel Garraín & Santacruz Banacloche & Paloma Ferreira-Aparicio & Antonio Martínez-Chaparro & Yolanda Lechón, 2021. "Sustainability Indicators for the Manufacturing and Use of a Fuel Cell Prototype and Hydrogen Storage for Portable Uses," Energies, MDPI, vol. 14(20), pages 1-15, October.
- Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
- Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Rocco, Matteo V. & Casalegno, Andrea & Colombo, Emanuela, 2018. "Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses," Applied Energy, Elsevier, vol. 232(C), pages 583-597.
- Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Le Quyen Luu & Eleonora Riva Sanseverino & Maurizio Cellura & Hoai-Nam Nguyen & Hoai-Phuong Tran & Hong Anh Nguyen, 2022. "Life Cycle Energy Consumption and Air Emissions Comparison of Alternative and Conventional Bus Fleets in Vietnam," Energies, MDPI, vol. 15(19), pages 1-15, September.
- Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
- Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
- Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
- Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
- Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030165. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.