IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p561-d134863.html
   My bibliography  Save this article

A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines

Author

Listed:
  • La Xiang

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Enzhe Song

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Yu Ding

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

The further thermal efficiency improvement of marine natural gas engine is constrained by a knocking phenomenon that commonly occurs in gas-fueled spark-ignited engines. It plays an important role to investigate how the knocking occurs and how to predict it based on the engine simulation model. In this paper, a two-zone model is developed to provide the prediction of knocking performance and NO emission, which is verified by engine test bed data from a transformed marine natural gas spark ignition (SI) engine. Cylindrical division theory is used to describe the shape of the two zones to decrease the computational cost, as well as a basic mechanism for NO concentration calculation. In order to solve the volume balance, three boundary parameters are introduced to determine the initial condition and mass flow between the two zones. Furthermore, boundary parameters’ variation and knocking factor (compression ratio and advanced ignition angle) will be discussed under different working conditions. Result shows that the two-zone model has sufficient accuracy in predicting engine performance, NO emission and knocking performance. Both the increasing compression ratio and advanced ignition angle have a promoting effect on knocking probability, knocking timing and knocking intensity. The knocking phenomenon can be avoided in the targeted natural gas SI engine by constraining the compression ratio smaller than 14 and advanced ignition angle later than 30° before top dead center (BTDC).

Suggested Citation

  • La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:561-:d:134863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baldi, Francesco & Theotokatos, Gerasimos & Andersson, Karin, 2015. "Development of a combined mean value–zero dimensional model and application for a large marine four-stroke Diesel engine simulation," Applied Energy, Elsevier, vol. 154(C), pages 402-415.
    2. Michael T. Kezirian & S. Leigh Phoenix, 2017. "Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves," Energies, MDPI, vol. 10(6), pages 1-8, June.
    3. Florian Zurbriggen & Richard Hutter & Christopher Onder, 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine," Energies, MDPI, vol. 9(1), pages 1-19, January.
    4. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    5. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    6. Abd Rashid Abd Aziz & Yohannes Tamirat Anbese & Ftwi Yohaness Hagos & Morgan R. Heikal & Firmansyah, 2017. "Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve," Energies, MDPI, vol. 10(7), pages 1-16, July.
    7. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2015. "Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters," Applied Energy, Elsevier, vol. 138(C), pages 11-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    3. Yongming Feng & Haiyan Wang & Ruifeng Gao & Yuanqing Zhu, 2019. "A Zero-Dimensional Mixing Controlled Combustion Model for Real Time Performance Simulation of Marine Two-Stroke Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-19, May.
    4. Sahoo, Sridhar & Srivastava, Dhananjay Kumar, 2021. "Effect of compression ratio on engine knock, performance, combustion and emission characteristics of a bi-fuel CNG engine," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    2. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    3. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    4. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    5. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    6. Amaral, Lucimar Venâncio & Santos, Nathália Duarte Souza Alvarenga & Roso, Vinícius Rückert & Sebastião, Rita de Cássia de Oliveira & Pujatti, Fabrício José Pacheco, 2021. "Effects of gasoline composition on engine performance, exhaust gases and operational costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    8. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    9. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    10. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    11. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    12. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    13. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    14. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    15. Na Wei & Yang Liu & Zhenjun Cui & Lin Jiang & Wantong Sun & Hanming Xu & Xiaoran Wang & Tong Qiu, 2020. "The Rule of Carrying Cuttings in Horizontal Well Drilling of Marine Natural Gas Hydrate," Energies, MDPI, vol. 13(5), pages 1-15, March.
    16. Pla, Benjamí n & Bares, Pau & Jiménez, Irina & Guardiola, Carlos & Zhang, Yahui & Shen, Tielong, 2020. "A fuzzy logic map-based knock control for spark ignition engines," Applied Energy, Elsevier, vol. 280(C).
    17. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    18. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    19. Vafamehr, Hassan & Cairns, Alasdair & Sampson, Ojon & Koupaie, Mohammadmohsen Moslemin, 2016. "The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine," Applied Energy, Elsevier, vol. 179(C), pages 687-697.
    20. Lin Yang & Chen Chen & Rui Jia & Youhong Sun & Wei Guo & Dongbin Pan & Xitong Li & Yong Chen, 2018. "Influence of Reservoir Stimulation on Marine Gas Hydrate Conversion Efficiency in Different Accumulation Conditions," Energies, MDPI, vol. 11(2), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:561-:d:134863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.