IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p964-d104176.html
   My bibliography  Save this article

Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve

Author

Listed:
  • Abd Rashid Abd Aziz

    (Center for Automotive Research, Universiti Teknologi Petronas, Tronoh 31750, Perak, Malaysia)

  • Yohannes Tamirat Anbese

    (Center for Automotive Research, Universiti Teknologi Petronas, Tronoh 31750, Perak, Malaysia)

  • Ftwi Yohaness Hagos

    (Automotive Engineering Research Group (AERG), Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia
    Automotive Engineering Center (AEC), Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia)

  • Morgan R. Heikal

    (Center for Automotive Research, Universiti Teknologi Petronas, Tronoh 31750, Perak, Malaysia)

  • Firmansyah

    (Center for Automotive Research, Universiti Teknologi Petronas, Tronoh 31750, Perak, Malaysia)

Abstract

An experimental study was conducted to investigate the effect of the structure of the induction flow on the characteristics of early flames in a lean-stratified and lean-homogeneous charge combustion of compressed natural gas (CNG) fuel in a direct injection (DI) engine at different engine speeds. The engine speed was varied at 1500 rpm, 1800 rpm and 2100 rpm, and the ignition timing was set at a 38.5° crank angle (CA) after top dead center (TDC) for all conditions. The engine was operated in a partial-load mode and a homogeneous air/fuel charge was achieved by injecting the fuel early (before the intake valve closure), while late injection during the compression stroke was used to produce a stratified charge. Different induction flow structures were obtained by adjusting the swirl control valves (SCV). Using an endoscopic intensified CCD (ICCD) camera, flame images were captured and analyzed. Code was developed to analyze the level of distortion of the flame and its wrinkledness, displacement and position relative to the spark center, as well as the flame growth rate. The results showed a higher flame growth rate with the flame kernel in the homogeneous charge, compared to the stratified combustion case. In the stratified charge combustion scenario, the 10° SCV closure (medium-tumble) resulted in a higher early flame growth rate, whereas a homogeneous charge combustion (characterized by strong swirl) resulted in the highest rate of flame growth.

Suggested Citation

  • Abd Rashid Abd Aziz & Yohannes Tamirat Anbese & Ftwi Yohaness Hagos & Morgan R. Heikal & Firmansyah, 2017. "Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve," Energies, MDPI, vol. 10(7), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:964-:d:104176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hagos, Ftwi Yohaness & A. Aziz, A. Rashid & Sulaiman, Shaharin A., 2015. "Methane enrichment of syngas (H2/CO) in a spark-ignition direct-injection engine: Combustion, performance and emissions comparison with syngas and Compressed Natural Gas," Energy, Elsevier, vol. 90(P2), pages 2006-2015.
    2. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    2. Salah E. Mohammed & M. B. Baharom & A. Rashid A. Aziz & Ezrann Z. Zainal A., 2019. "Modelling of Combustion Characteristics of a Single Curved-Cylinder Spark-Ignition Crank-Rocker Engine," Energies, MDPI, vol. 12(17), pages 1-15, August.
    3. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    4. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    2. Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
    3. Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
    4. Liu, Xinghua & Ma, Yue & Li, Shuyuan & Yan, Hua & Wang, Daxi & Luo, Yongfeng, 2019. "Study of the reaction mechanism of aluminum based composite fuel and chlorine trifluoride oxide," Energy, Elsevier, vol. 168(C), pages 393-399.
    5. Xi, Haoran & Fu, Jianqin & Zhou, Feng & Yu, Juan & Liu, Jingping & Meng, Zhongwei, 2023. "Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME)," Energy, Elsevier, vol. 284(C).
    6. S.D. Martinez-Boggio & S.S. Merola & P. Teixeira Lacava & A. Irimescu & P.L. Curto-Risso, 2019. "Effect of Fuel and Air Dilution on Syngas Combustion in an Optical SI Engine," Energies, MDPI, vol. 12(8), pages 1-23, April.
    7. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    8. Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
    9. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    10. Santiago Martinez & Adrian Irimescu & Simona Silvia Merola & Pedro Lacava & Pedro Curto-Riso, 2017. "Flame Front Propagation in an Optical GDI Engine under Stoichiometric and Lean Burn Conditions," Energies, MDPI, vol. 10(9), pages 1-23, September.
    11. Magín Lapuerta & Rosario Ballesteros & Javier Barba, 2017. "Strategies to Introduce n-Butanol in Gasoline Blends," Sustainability, MDPI, vol. 9(4), pages 1-10, April.
    12. Ji, Changwei & Shi, Lei & Wang, Shuofeng & Cong, Xiaoyu & Su, Teng & Yu, Menghui, 2017. "Investigation on performance of a spark-ignition engine fueled with dimethyl ether and gasoline mixtures under idle and stoichiometric conditions," Energy, Elsevier, vol. 126(C), pages 335-342.
    13. Amin Paykani, 2021. "Comparative Study on Chemical Kinetics Mechanisms for Methane-Based Fuel Mixtures under Engine-Relevant Conditions," Energies, MDPI, vol. 14(10), pages 1-15, May.
    14. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Papagiannakis, Roussos G., 2019. "Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine," Energy, Elsevier, vol. 174(C), pages 1145-1157.
    15. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    16. Kan, Xiang & Zhou, Dezhi & Yang, Wenming & Zhai, Xiaoqiang & Wang, Chi-Hwa, 2018. "An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 210-222.
    17. Manfredi Villani & Phillip Aquino, 2020. "Turbulent Flame Geometry Measurements in a Mass-Production Gasoline Direct Injection Engine," Energies, MDPI, vol. 13(1), pages 1-23, January.
    18. Paykani, Amin & Frouzakis, Christos E. & Boulouchos, Konstantinos, 2019. "Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 242(C), pages 1712-1724.
    19. Tian, Zhi & Zhen, Xudong & Wang, Yang & Liu, Daming & Li, Xiaoyan, 2020. "Combustion and emission characteristics of n-butanol-gasoline blends in SI direct injection gasoline engine," Renewable Energy, Elsevier, vol. 146(C), pages 267-279.
    20. Ali Diané & Gounkaou Woro Yomi & Sidiki Zongo & Tizane Daho & Hervé Jeanmart, 2023. "Characterization, at Partial Loads, of the Combustion and Emissions of a Dual-Fuel Engine Burning Diesel and a Lean Gas Surrogate," Energies, MDPI, vol. 16(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:964-:d:104176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.