IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1342-d508553.html
   My bibliography  Save this article

A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load

Author

Listed:
  • Van Chien Pham

    (Graduate School of Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

  • Jae-Hyuk Choi

    (Division of Marine Systems Engineering, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

  • Beom-Seok Rho

    (Korea Institute of Maritime and Fisheries Technology, 367, Haeyang-ro, Yeongdo-gu, Busan 49111, Korea)

  • Jun-Soo Kim

    (Korea Institute of Maritime and Fisheries Technology, 367, Haeyang-ro, Yeongdo-gu, Busan 49111, Korea)

  • Kyunam Park

    (Machinery Service Department, Hyundai Global Service, 79, Centum Jungang-ro, Haeundae-gu, Busan 48058, Korea)

  • Sang-Kyun Park

    (Division of Marine IT, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

  • Van Vang Le

    (Maritime Academy, Ho Chi Minh City University of Transport, No.2, Vo Oanh Str., Binh Thanh Dist., Ho Chi Minh 717400, Vietnam)

  • Won-Ju Lee

    (Division of Marine Engineering, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan 49112, Korea
    Interdisciplinary Major of Maritime AI Convergence, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

Abstract

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO 2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.

Suggested Citation

  • Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1342-:d:508553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    2. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    3. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    4. Lucas Eder & Marko Ban & Gerhard Pirker & Milan Vujanovic & Peter Priesching & Andreas Wimmer, 2018. "Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    5. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    6. Zhang, Qiang & Li, Menghan & Shao, Sidong, 2015. "Combustion process and emissions of a heavy-duty engine fueled with directly injected natural gas and pilot diesel," Applied Energy, Elsevier, vol. 157(C), pages 217-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ao Zhou & Hui Jin & Wenhan Cao & Ming Pang & Yangyang Li & Chao Zhu, 2022. "Influence of Pilot Injection on Combustion Characteristic of Methanol–Diesel Dual-Fuel Engine," Energies, MDPI, vol. 15(10), pages 1-14, May.
    2. Jens Frühhaber & Thomas Lauer, 2021. "Numerical Investigation of the Turbulent Flame Propagation in Dual Fuel Engines by Means of Large Eddy Simulation," Energies, MDPI, vol. 14(16), pages 1-25, August.
    3. Mirosław Karczewski & Grzegorz Szamrej, 2023. "Experimental Evaluation of the Effect of Replacing Diesel Fuel by CNG on the Emission of Harmful Exhaust Gas Components and Emission Changes in a Dual-Fuel Engine," Energies, MDPI, vol. 16(1), pages 1-32, January.
    4. Ju-Hwan Seol & Van Chien Pham & Won-Ju Lee, 2021. "Effects of the Multiple Injection Strategy on Combustion and Emission Characteristics of a Two-Stroke Marine Engine," Energies, MDPI, vol. 14(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    2. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    3. Li, Menghan & Wu, Hanming & Zhang, Tiechen & Shen, Boxiong & Zhang, Qiang & Li, Zhenguo, 2020. "A comprehensive review of pilot ignited high pressure direct injection natural gas engines: Factors affecting combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Zhang, Zhiqing & Lv, Junshuai & Li, Weiqing & Long, Junming & Wang, Su & Tan, Dongli & Yin, Zibin, 2022. "Performance and emission evaluation of a marine diesel engine fueled with natural gas ignited by biodiesel-diesel blended fuel," Energy, Elsevier, vol. 256(C).
    5. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Yousefi, Amin & Birouk, Madjid, 2017. "Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load," Applied Energy, Elsevier, vol. 189(C), pages 492-505.
    7. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    8. Park, Hyunjun & Lee, Sanghuk & Jeong, Jinyeong & Chang, Daejun, 2018. "Design of the compressor-assisted LNG fuel gas supply system," Energy, Elsevier, vol. 158(C), pages 1017-1027.
    9. Rasoulinezhad, Ehsan & Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki & Sarker, Tapan, 2019. "Russian Federation–East Asia Liquefied Natural Gas Trade Patterns and Regional Energy Security," ADBI Working Papers 965, Asian Development Bank Institute.
    10. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    11. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Kian-Guan Lim & Michelle Lim, 2020. "Financial performance of shipping firms that increase LNG carriers and the support of eco-innovation," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-25, December.
    13. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    14. Raslavičius, Laurencas & Keršys, Artūras & Mockus, Saulius & Keršienė, Neringa & Starevičius, Martynas, 2014. "Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 513-525.
    15. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    16. Ilnytskyy Denys & Zinchenko Sergii & Savych Oleksandr & Yanchetskyy Oleksandr, 2018. "Analysis of seaports development strategies: science, technology, education and marketing," Technology audit and production reserves, 3(41) 2018, Socionet;Technology audit and production reserves, vol. 3(4(41)), pages 10-24.
    17. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    18. Yaliwal, V.S. & Banapurmath, N.R. & Hosmath, R.S. & Khandal, S.V. & Budzianowski, Wojciech M., 2016. "Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application," Renewable Energy, Elsevier, vol. 99(C), pages 1253-1261.
    19. Namasivayam, A.M. & Korakianitis, T. & Crookes, R.J. & Bob-Manuel, K.D.H. & Olsen, J., 2010. "Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines," Applied Energy, Elsevier, vol. 87(3), pages 769-778, March.
    20. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1342-:d:508553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.