IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p217-d127274.html
   My bibliography  Save this article

Conceptual Design of Operation Strategies for Hybrid Electric Aircraft

Author

Listed:
  • Julian Hoelzen

    (Institute of Electric Power Systems, Leibniz Universität Hannover, Appelstr. 9a, 30167 Hanover, Germany)

  • Yaolong Liu

    (Aeronautics Research Centre Niedersachsen (NFL), Technische Universität Braunschweig, Hermann-Blenk-Straße 42, 38108 Braunschweig, Germany)

  • Boris Bensmann

    (Institute of Electric Power Systems, Leibniz Universität Hannover, Appelstr. 9a, 30167 Hanover, Germany)

  • Christopher Winnefeld

    (Institute of Electric Power Systems, Leibniz Universität Hannover, Appelstr. 9a, 30167 Hanover, Germany)

  • Ali Elham

    (Institute of Aircraft Design and Lightweight Structures, Technische Universität Braunschweig, Hermann-Blenk-Straße 35, 38108 Braunschweig, Germany)

  • Jens Friedrichs

    (Institute of Jet Propulsion and Turbomachinery, TU Braunschweig, Hermann-Blenk-Straße 37, 38108 Brunswick, Germany)

  • Richard Hanke-Rauschenbach

    (Institute of Electric Power Systems, Leibniz Universität Hannover, Appelstr. 9a, 30167 Hanover, Germany)

Abstract

Ambitious targets to reduce emissions caused by aviation in the light of an expected ongoing rise of the air transport demand in the future drive the research of propulsion systems with lower CO 2 emissions. Regional hybrid electric aircraft (HEA) powered by conventional gas turbines and battery powered electric motors are investigated to test hybrid propulsion operation strategies. Especially the role of the battery within environmentally friendly concepts with significantly reduced carbon footprint is analyzed. Thus, a new simulation approach for HEA is introduced. The main findings underline the importance of choosing the right power-to-energy-ratio of a battery according to the flight mission. The gravimetric energy and power density of the electric storages determine the technologically feasibility of hybrid concepts. Cost competitive HEA configurations are found, but do not promise the targeted CO 2 emission savings, when the well-to-wheel system is regarded with its actual costs. Sensitivity studies are used to determine external levers that favor the profitability of HEA.

Suggested Citation

  • Julian Hoelzen & Yaolong Liu & Boris Bensmann & Christopher Winnefeld & Ali Elham & Jens Friedrichs & Richard Hanke-Rauschenbach, 2018. "Conceptual Design of Operation Strategies for Hybrid Electric Aircraft," Energies, MDPI, vol. 11(1), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:217-:d:127274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    2. Yuki Kato & Satoshi Hori & Toshiya Saito & Kota Suzuki & Masaaki Hirayama & Akio Mitsui & Masao Yonemura & Hideki Iba & Ryoji Kanno, 2016. "High-power all-solid-state batteries using sulfide superionic conductors," Nature Energy, Nature, vol. 1(4), pages 1-7, April.
    3. Yaolong Liu & Ali Elham & Peter Horst & Martin Hepperle, 2018. "Exploring Vehicle Level Benefits of Revolutionary Technology Progress via Aircraft Design and Optimization," Energies, MDPI, vol. 11(1), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Pettes-Duler & Xavier Roboam & Bruno Sareni, 2022. "Integrated Optimal Design for Hybrid Electric Powertrain of Future Aircrafts," Energies, MDPI, vol. 15(18), pages 1-25, September.
    2. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    3. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    4. Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    5. Francisco Ferreira da Silva & João F. P. Fernandes & Paulo Jose da Costa Branco, 2021. "Barriers and Challenges Going from Conventional to Cryogenic Superconducting Propulsion for Hybrid and All-Electric Aircrafts," Energies, MDPI, vol. 14(21), pages 1-17, October.
    6. Ekici, Selcuk & Ayar, Murat & Orhan, Ilkay & Karakoc, Tahir Hikmet, 2024. "Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft," Energy, Elsevier, vol. 295(C).
    7. Pedro Alves & Miguel Silvestre & Pedro Gamboa, 2020. "Aircraft Propellers—Is There a Future?," Energies, MDPI, vol. 13(16), pages 1-17, August.
    8. Robles, Endika & Fernandez, Markel & Andreu, Jon & Ibarra, Edorta & Ugalde, Unai, 2021. "Advanced power inverter topologies and modulation techniques for common-mode voltage elimination in electric motor drive systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    9. Dahal, Karna & Brynolf, Selma & Xisto, Carlos & Hansson, Julia & Grahn, Maria & Grönstedt, Tomas & Lehtveer, Mariliis, 2021. "Techno-economic review of alternative fuels and propulsion systems for the aviation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Karim Abu Salem & Giuseppe Palaia & Alessandro A. Quarta & Mario R. Chiarelli, 2023. "Medium-Range Aircraft Conceptual Design from a Local Air Quality and Climate Change Viewpoint," Energies, MDPI, vol. 16(10), pages 1-24, May.
    11. Farsi, Aida & Rosen, Marc A., 2023. "Performance analysis of a hybrid aircraft propulsion system using solid oxide fuel cell, lithium ion battery and gas turbine," Applied Energy, Elsevier, vol. 329(C).
    12. Hashemi, Seyed Reza & Mahajan, Ajay Mohan & Farhad, Siamak, 2021. "Online estimation of battery model parameters and state of health in electric and hybrid aircraft application," Energy, Elsevier, vol. 229(C).
    13. Rohacs, Jozsef & Rohacs, Daniel, 2020. "Energy coefficients for comparison of aircraft supported by different propulsion systems," Energy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    2. Matthieu Pettes-Duler & Xavier Roboam & Bruno Sareni, 2022. "Integrated Optimal Design for Hybrid Electric Powertrain of Future Aircrafts," Energies, MDPI, vol. 15(18), pages 1-25, September.
    3. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    4. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    5. Raphael Calel & Jonathan Colmer & Antoine Dechezleprêtre & Matthieu Glachant, 2025. "Do Carbon Offsets Offset Carbon?," American Economic Journal: Applied Economics, American Economic Association, vol. 17(1), pages 1-40, January.
    6. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    7. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    8. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    9. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    10. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    11. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    12. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    13. Enevoldsen, Peter & Valentine, Scott Victor & Sovacool, Benjamin K., 2018. "Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development," Energy Policy, Elsevier, vol. 120(C), pages 1-7.
    14. Irene Clara Pisón Fernández & Félix Puime Guillén & Miguel Ángel Crespo Cibrán, 2015. "Desarrollo de un modelo de determinación de cash-flows para un proyecto de energía eólica," Economic Analysis Working Papers (2002-2010). Atlantic Review of Economics (2011-2016), Colexio de Economistas de A Coruña, Spain and Fundación Una Galicia Moderna, vol. 1, pages 1-1, June.
    15. Valentine, Scott Victor, 2010. "A STEP toward understanding wind power development policy barriers in advanced economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2796-2807, December.
    16. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    17. Alexander Barke & Walter Cistjakov & Dominik Steckermeier & Christian Thies & Jan‐Linus Popien & Peter Michalowski & Sofia Pinheiro Melo & Felipe Cerdas & Christoph Herrmann & Ulrike Krewer & Arno Kwa, 2023. "Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 795-810, June.
    18. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    19. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
    20. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:217-:d:127274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.