IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v140y2021ics136403212100040x.html
   My bibliography  Save this article

Advanced power inverter topologies and modulation techniques for common-mode voltage elimination in electric motor drive systems

Author

Listed:
  • Robles, Endika
  • Fernandez, Markel
  • Andreu, Jon
  • Ibarra, Edorta
  • Ugalde, Unai

Abstract

The demand for more reliable and efficient electric machines and drives is constantly growing in the renewable energy and transport electrification sectors. Such drive systems are usually fed by semiconductor switch-based inverters, which, unlike balanced pure sine-wave AC sources, produce large-amplitude, high-frequency common-mode voltage (CMV) waveforms, as a result of the application of pulse-width modulation (PWM). This can lead to a number of issues, such as high electromagnetic interference, deterioration of stator winding insulation, and leakage current flow through motor bearings, which dramatically reduce the life-cycle of machines and drives. Thus, this topic has been extensively investigated in the scientific literature, where either corrective or preventive mitigation approaches have been proposed. The former attempt to relieve the damage produced, whereas the latter tackle the problem at its root, by minimizing or eliminating the CMV produced by the inverter. This work provides a comprehensive review of the major CMV mitigation/elimination solutions, with emphasis on preventive actions, in the form of inverter topology variants and/or advanced modulation techniques. A wide picture of this subject is provided to researchers and field engineers, with valuable information and practical hints for the design and development of high-performance electric drive systems. Indeed, an in-depth analysis of the most recent literature clearly shows that best results are obtained by conveniently combining alternative topologies and modulation techniques, which, in some cases, make it possible to completely suppress the CMV component.

Suggested Citation

  • Robles, Endika & Fernandez, Markel & Andreu, Jon & Ibarra, Edorta & Ugalde, Unai, 2021. "Advanced power inverter topologies and modulation techniques for common-mode voltage elimination in electric motor drive systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:rensus:v:140:y:2021:i:c:s136403212100040x
    DOI: 10.1016/j.rser.2021.110746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100040X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Hoelzen & Yaolong Liu & Boris Bensmann & Christopher Winnefeld & Ali Elham & Jens Friedrichs & Richard Hanke-Rauschenbach, 2018. "Conceptual Design of Operation Strategies for Hybrid Electric Aircraft," Energies, MDPI, vol. 11(1), pages 1-26, January.
    2. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    3. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    4. Matallana, A. & Ibarra, E. & López, I. & Andreu, J. & Garate, J.I. & Jordà, X. & Rebollo, J., 2019. "Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Luca Concari & Davide Barater & Andrea Toscani & Carlo Concari & Giovanni Franceschini & Giampaolo Buticchi & Marco Liserre & He Zhang, 2019. "Assessment of Efficiency and Reliability of Wide Band-Gap Based H8 Inverter in Electric Vehicle Applications," Energies, MDPI, vol. 12(10), pages 1-17, May.
    6. Markel Fernandez & Andres Sierra-Gonzalez & Endika Robles & Iñigo Kortabarria & Edorta Ibarra & Jose Luis Martin, 2020. "New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives," Energies, MDPI, vol. 13(3), pages 1-19, January.
    7. Fernando Acosta-Cambranis & Jordi Zaragoza & Luis Romeral & Néstor Berbel, 2020. "Comparative Analysis of SVM Techniques for a Five-Phase VSI Based on SiC Devices," Energies, MDPI, vol. 13(24), pages 1-25, December.
    8. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Endika Robles & Markel Fernandez & Edorta Ibarra & Jon Andreu & Iñigo Kortabarria, 2019. "Mitigation of Common Mode Voltage Issues in Electric Vehicle Drive Systems by Means of an Alternative AC-Decoupling Power Converter Topology," Energies, MDPI, vol. 12(17), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robles, Endika & Fernandez, Markel & Andreu, Jon & Ibarra, Edorta & Zaragoza, Jordi & Ugalde, Unai, 2022. "Common-mode voltage mitigation in multiphase electric motor drive systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Won-Sang Jeong & Yoon-Seong Lee & Jung-Hyo Lee & Chang-Hee Lee & Chung-Yuen Won, 2021. "Space Vector Modulation (SVM)-Based Common-Mode Current (CMC) Reduction Method of H8 Inverter for Permanent Magnet Synchronous Motor (PMSM) Drives," Energies, MDPI, vol. 15(1), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robles, Endika & Fernandez, Markel & Andreu, Jon & Ibarra, Edorta & Zaragoza, Jordi & Ugalde, Unai, 2022. "Common-mode voltage mitigation in multiphase electric motor drive systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Markel Fernandez & Andres Sierra-Gonzalez & Endika Robles & Iñigo Kortabarria & Edorta Ibarra & Jose Luis Martin, 2020. "New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives," Energies, MDPI, vol. 13(3), pages 1-19, January.
    3. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Endika Robles & Markel Fernandez & Edorta Ibarra & Jon Andreu & Iñigo Kortabarria, 2019. "Mitigation of Common Mode Voltage Issues in Electric Vehicle Drive Systems by Means of an Alternative AC-Decoupling Power Converter Topology," Energies, MDPI, vol. 12(17), pages 1-27, August.
    5. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    6. Matthieu Pettes-Duler & Xavier Roboam & Bruno Sareni, 2022. "Integrated Optimal Design for Hybrid Electric Powertrain of Future Aircrafts," Energies, MDPI, vol. 15(18), pages 1-25, September.
    7. Li Zhao & Shoudao Huang & Yuan Gao & Jian Zheng, 2022. "A Common-Mode Voltage Suppression Strategy Based on Double Zero-Sequence Injection PWM for Two-Level Six-Phase VSIs," Energies, MDPI, vol. 15(17), pages 1-25, August.
    8. Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    9. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    10. Zi-Qiang Zhu & Dawei Liang, 2022. "Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures," Energies, MDPI, vol. 15(21), pages 1-51, November.
    11. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    12. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    13. Oğuz Mısır & Mehmet Akar, 2022. "Efficiency and Core Loss Map Estimation with Machine Learning Based Multivariate Polynomial Regression Model," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    14. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    15. Giorgio M. Giannuzzi & Viktoriya Mostova & Cosimo Pisani & Salvatore Tessitore & Alfredo Vaccaro, 2022. "Enabling Technologies for Enhancing Power System Stability in the Presence of Converter-Interfaced Generators," Energies, MDPI, vol. 15(21), pages 1-13, October.
    16. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    17. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    18. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    19. Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
    20. Anam Nadeem & Mosè Rossi & Erica Corradi & Lingkang Jin & Gabriele Comodi & Nadeem Ahmed Sheikh, 2022. "Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan," Energies, MDPI, vol. 15(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:140:y:2021:i:c:s136403212100040x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.