IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v191y2020ics0360544219320869.html
   My bibliography  Save this article

Energy coefficients for comparison of aircraft supported by different propulsion systems

Author

Listed:
  • Rohacs, Jozsef
  • Rohacs, Daniel

Abstract

Stakeholders envision introduction of electric and hybrid-electric aircraft into operation by 2035. First developments meet a series of challenges caused mostly by deficiencies (like low specific energy) of battery technology. Due to this, electric aircraft will have unacceptably large take-off weight or significantly reduced range. Energy factors (energy used per unit of work performed adapted to electric and hybrid-electric aircraft can support the evaluation of aircraft with different propulsion systems, and prediction of required battery technology and electric energy generation. Using the recommended energy factors, aircraft with different propulsion systems are comparable at the concept inspiration and conceptual design stages of new aircraft design. The results are clear and understandable. Energy intensity (evaluating the “aerodynamic goodness” at cruise flight) is about 10–60% lower (better) for full electric aircraft, but such aircraft have 50–80% less range and 40–230% greater take-off mass than comparable conventionally powered aircraft. Analysis of the used energy factors shows that the full electric small 4-seater aircraft may use less energy for flights up to 750 km range. Total energy used per unit of work done is 15–20% greater than total used energy during aircraft operations.

Suggested Citation

  • Rohacs, Jozsef & Rohacs, Daniel, 2020. "Energy coefficients for comparison of aircraft supported by different propulsion systems," Energy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219320869
    DOI: 10.1016/j.energy.2019.116391
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219320869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas W. Schäfer & Steven R. H. Barrett & Khan Doyme & Lynnette M. Dray & Albert R. Gnadt & Rod Self & Aidan O’Sullivan & Athanasios P. Synodinos & Antonio J. Torija, 2019. "Technological, economic and environmental prospects of all-electric aircraft," Nature Energy, Nature, vol. 4(2), pages 160-166, February.
    2. Chester, Mikhail V, 2008. "Life-cycle Environmental Inventory of Passenger Transportation in the United States," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7n29n303, Institute of Transportation Studies, UC Berkeley.
    3. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    4. Julian Hoelzen & Yaolong Liu & Boris Bensmann & Christopher Winnefeld & Ali Elham & Jens Friedrichs & Richard Hanke-Rauschenbach, 2018. "Conceptual Design of Operation Strategies for Hybrid Electric Aircraft," Energies, MDPI, vol. 11(1), pages 1-26, January.
    5. Baharozu, Eren & Soykan, Gurkan & Ozerdem, M. Baris, 2017. "Future aircraft concept in terms of energy efficiency and environmental factors," Energy, Elsevier, vol. 140(P2), pages 1368-1377.
    6. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    2. Chendong Liao & Nicola Bianchi & Zhuoran Zhang, 2024. "Recent Developments and Trends in High-Performance PMSM for Aeronautical Applications," Energies, MDPI, vol. 17(23), pages 1-35, December.
    3. Rohacs, J. & Kale, U. & Rohacs, D., 2022. "Radically new solutions for reducing the energy use by future aircraft and their operations," Energy, Elsevier, vol. 239(PE).
    4. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    5. Aydın, Emre & Turan, Onder, 2023. "Performance models of passenger aircraft and propulsion systems based on particle swarm and Spotted Hyena Optimization methods," Energy, Elsevier, vol. 268(C).
    6. Wang, Mingkai & Xiaoyang, Guotai & He, Ruichen & Zhang, Shuguang & Ma, Jintao, 2023. "Bi-layer sizing and design optimization method of propulsion system for electric vertical takeoff and landing aircraft," Energy, Elsevier, vol. 283(C).
    7. Kinene, Alan & Birolini, Sebastian & Cattaneo, Mattia & Granberg, Tobias Andersson, 2023. "Electric aircraft charging network design for regional routes: A novel mathematical formulation and kernel search heuristic," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1300-1315.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anita Prapotnik Brdnik & Rok Kamnik & Maršenka Marksel & Stanislav Božičnik, 2019. "Market and Technological Perspectives for the New Generation of Regional Passenger Aircraft," Energies, MDPI, vol. 12(10), pages 1-14, May.
    2. Chiambaretto, Paul & Mayenc, Elodie & Chappert, Hervé & Engsig, Juliane & Fernandez, Anne-Sophie & Le Roy, Frédéric, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Journal of Air Transport Management, Elsevier, vol. 93(C).
    3. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    4. Francisco Ferreira da Silva & João F. P. Fernandes & Paulo Jose da Costa Branco, 2021. "Barriers and Challenges Going from Conventional to Cryogenic Superconducting Propulsion for Hybrid and All-Electric Aircrafts," Energies, MDPI, vol. 14(21), pages 1-17, October.
    5. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Capasso, Clemente & Lauria, Davide & Veneri, Ottorino, 2018. "Experimental evaluation of model-based control strategies of sodium-nickel chloride battery plus supercapacitor hybrid storage systems for urban electric vehicles," Applied Energy, Elsevier, vol. 228(C), pages 2478-2489.
    7. Shun Xiang & Guangdi Hu & Ruisen Huang & Feng Guo & Pengkai Zhou, 2018. "Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints," Energies, MDPI, vol. 11(2), pages 1-20, January.
    8. Dahal, Karna & Brynolf, Selma & Xisto, Carlos & Hansson, Julia & Grahn, Maria & Grönstedt, Tomas & Lehtveer, Mariliis, 2021. "Techno-economic review of alternative fuels and propulsion systems for the aviation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, David & Sengupta, Raja & Walker, Joan L., 2012. "The Quantified Traveler: Changing transport behavior with personalized travel data feedback," University of California Transportation Center, Working Papers qt3047k0dw, University of California Transportation Center.
    10. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    11. Matthieu Pettes-Duler & Xavier Roboam & Bruno Sareni, 2022. "Integrated Optimal Design for Hybrid Electric Powertrain of Future Aircrafts," Energies, MDPI, vol. 15(18), pages 1-25, September.
    12. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    13. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    14. Thorne, Rebecca Jayne & Hovi, Inger Beate & Figenbaum, Erik & Pinchasik, Daniel Ruben & Amundsen, Astrid Helene & Hagman, Rolf, 2021. "Facilitating adoption of electric buses through policy: Learnings from a trial in Norway," Energy Policy, Elsevier, vol. 155(C).
    15. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Alexander Koch & Lorenzo Nicoletti & Thomas Herrmann & Markus Lienkamp, 2022. "Implementation and Analyses of an Eco-Driving Algorithm for Different Battery Electric Powertrain Topologies Based on a Split Loss Integration Approach," Energies, MDPI, vol. 15(15), pages 1-29, July.
    17. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    18. Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    19. Sofiia Miliutenko & Ingeborg Kluts & Kristina Lundberg & Susanna Toller & Helge Brattebø & Harpa Birgisdóttir & José Potting, 2014. "Consideration Of Life Cycle Energy Use And Greenhouse Gas Emissions In Road Infrastructure Planning Processes: Examples Of Sweden, Norway, Denmark And The Netherlands," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-26.
    20. Mattia Ricco & Jinhao Meng & Tudor Gherman & Gabriele Grandi & Remus Teodorescu, 2019. "Smart Battery Pack for Electric Vehicles Based on Active Balancing with Wireless Communication Feedback," Energies, MDPI, vol. 12(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219320869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.