IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6869-d660362.html
   My bibliography  Save this article

Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland

Author

Listed:
  • Piotr Kułyk

    (Faculty of Economics and Management, University of Zielona Góra, 65-417 Zielona Góra, Poland)

  • Łukasz Augustowski

    (Faculty of Economics and Management, University of Zielona Góra, 65-417 Zielona Góra, Poland)

Abstract

The research was a response to the search for alternative energy sources and the assessment of their profitability and legitimacy of use. The assessment used combined energy sources in the form of wind, solar, and natural gas energy. The research was carried out in various locations with varying degrees of sunlight and in various wind zones, which was motivated by the adopted strategy of increasing the importance of non-conventional energy sources and reducing greenhouse gas emissions. The evaluation was performed using the Homer Grid software. The studies showed the justification for the use of hybrid energy sources, combining renewable and non-renewable sources, at the current stage of development. In the conditions of the Lubuskie Voivodeship, the level of insolation was more important than the more favourable wind zone in such a model. Higher economic efficiency of the hybrid model was obtained in the southern location, with slightly less favourable conditions for wind installations. At the same time, the investments were economically profitable and allowed for their return in the perspective of at least eleven years, even at current prices.

Suggested Citation

  • Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6869-:d:660362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayong Le Kama, Alain D., 2001. "Sustainable growth, renewable resources and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 25(12), pages 1911-1918, December.
    2. Jensen, Cathrine Ulla & Panduro, Toke Emil & Lundhede, Thomas Hedemark & Nielsen, Anne Sofie Elberg & Dalsgaard, Mette & Thorsen, Bo Jellesmark, 2018. "The impact of on-shore and off-shore wind turbine farms on property prices," Energy Policy, Elsevier, vol. 116(C), pages 50-59.
    3. Das, Trishna & Krishnan, Venkat & McCalley, James D., 2015. "Assessing the benefits and economics of bulk energy storage technologies in the power grid," Applied Energy, Elsevier, vol. 139(C), pages 104-118.
    4. Grieser, Benno & Sunak, Yasin & Madlener, Reinhard, 2015. "Economics of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, Elsevier, vol. 78(C), pages 334-350.
    5. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    6. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    7. Sarker, Shiplu, 2016. "Feasibility analysis of a renewable hybrid energy system with producer gas generator fulfilling remote household electricity demand in Southern Norway," Renewable Energy, Elsevier, vol. 87(P1), pages 772-781.
    8. Elhadidy, M.A., 2002. "Performance evaluation of hybrid (wind/solar/diesel) power systems," Renewable Energy, Elsevier, vol. 26(3), pages 401-413.
    9. Hediger, Werner, 2009. "Sustainable development with stock pollution," Environment and Development Economics, Cambridge University Press, vol. 14(6), pages 759-780, December.
    10. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    11. Diogo Menezes & Mateus Mendes & Jorge Alexandre Almeida & Torres Farinha, 2020. "Wind Farm and Resource Datasets: A Comprehensive Survey and Overview," Energies, MDPI, vol. 13(18), pages 1-24, September.
    12. Zhang Wei-Bin, 2011. "Renewable Resources, Capital Accumulation, and Economic Growth," Business Systems Research, Sciendo, vol. 2(1), pages 24-35, January.
    13. Li, Chong & Ge, Xinfeng & Zheng, Yuan & Xu, Chang & Ren, Yan & Song, Chenguang & Yang, Chunxia, 2013. "Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China," Energy, Elsevier, vol. 55(C), pages 263-272.
    14. Heagle, A.L.B. & Naterer, G.F. & Pope, K., 2011. "Small wind turbine energy policies for residential and small business usage in Ontario, Canada," Energy Policy, Elsevier, vol. 39(4), pages 1988-1999, April.
    15. Gylfason, Thorvaldur & Herbertsson, Tryggvi Thor & Zoega, Gylfi, 1999. "A Mixed Blessing," Macroeconomic Dynamics, Cambridge University Press, vol. 3(2), pages 204-225, June.
    16. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    17. Wan, Chunqiu & Wang, Jun & Yang, Geng & Gu, Huajie & Zhang, Xing, 2012. "Wind farm micro-siting by Gaussian particle swarm optimization with local search strategy," Renewable Energy, Elsevier, vol. 48(C), pages 276-286.
    18. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    19. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    20. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    21. Piotr Kułyk & Łukasz Augustowski, 2020. "Conditions of the Occurrence of the Environmental Kuznets Curve in Agricultural Production of Central and Eastern European Countries," Energies, MDPI, vol. 13(20), pages 1-22, October.
    22. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    23. Mohammad Hosein Mohammadnezami & Mehdi Ali Ehyaei & Marc A. Rosen & Mohammad Hossein Ahmadi, 2015. "Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    24. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    25. Feng, Ju & Shen, Wen Zhong, 2015. "Solving the wind farm layout optimization problem using random search algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 182-192.
    26. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    27. Chang, Byungik & Starcher, Ken, 2019. "Evaluation of wind and solar energy investments in Texas," Renewable Energy, Elsevier, vol. 132(C), pages 1348-1359.
    28. Katzenstein, Warren & Apt, Jay, 2012. "The cost of wind power variability," Energy Policy, Elsevier, vol. 51(C), pages 233-243.
    29. Piotr Kulyk & Mariola Michalowska & Lukasz Augustowski, 2020. "Sustainable Consumption in the Market of Food Production: The Case of Lubuskie Voivodeship," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 225-240.
    30. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    31. Sachs, Jeffrey D. & Warner, Andrew M., 2001. "The curse of natural resources," European Economic Review, Elsevier, vol. 45(4-6), pages 827-838, May.
    32. Fleck, Brian & Huot, Marc, 2009. "Comparative life-cycle assessment of a small wind turbine for residential off-grid use," Renewable Energy, Elsevier, vol. 34(12), pages 2688-2696.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Amsharuk & Grażyna Łaska, 2022. "A Review: Existing Methods for Solving Spatial Planning Problems for Wind Turbines in Poland," Energies, MDPI, vol. 15(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    2. Hou, Peng & Hu, Weihao & Soltani, Mohsen & Chen, Cong & Chen, Zhe, 2017. "Combined optimization for offshore wind turbine micro siting," Applied Energy, Elsevier, vol. 189(C), pages 271-282.
    3. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    4. Zhang Wei-Bin, 2013. "Habit Formation and Preference Change with Capital and Renewable Resources," Business Systems Research, Sciendo, vol. 4(2), pages 108-125, December.
    5. Chen, K. & Song, M.X. & Zhang, X. & Wang, S.F., 2016. "Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm," Renewable Energy, Elsevier, vol. 96(PA), pages 676-686.
    6. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    8. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    9. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    10. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    11. Wei-Bin Zhang, 2017. "Growth with Endogenous Capital, Knowledge, and Renewable Resources," Romanian Statistical Review, Romanian Statistical Review, vol. 65(1), pages 19-37, March.
    12. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    13. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    14. Wei-Bin ZHANG, 2014. "Human Capital, Wealth, and Renewable Resources," Expert Journal of Economics, Sprint Investify, vol. 2(1), pages 1-20.
    15. Chen, Kaixuan & Lin, Jin & Qiu, Yiwei & Liu, Feng & Song, Yonghua, 2022. "Joint optimization of wind farm layout considering optimal control," Renewable Energy, Elsevier, vol. 182(C), pages 787-796.
    16. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    17. Ju Feng & Wen Zhong Shen, 2015. "Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction," Energies, MDPI, vol. 8(4), pages 1-18, April.
    18. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
    19. Sun, Haiying & Yang, Hongxing & Gao, Xiaoxia, 2019. "Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines," Energy, Elsevier, vol. 168(C), pages 637-650.
    20. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6869-:d:660362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.