IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v120y2018icp1-7.html
   My bibliography  Save this article

Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development

Author

Listed:
  • Enevoldsen, Peter
  • Valentine, Scott Victor
  • Sovacool, Benjamin K.

Abstract

Reliable empirical data on the siting characteristics and operational performance of wind farms are scarce. Knowing more about the technical characteristics of wind farms provides insight into the business mindset of wind farm developers, which can be useful for policymakers or researchers who are intent on designing policy in a way to optimize wind farm investment by creating better alignment between the investment patterns sought by developers and government support designed to attract investment. This study draws on a unique dataset from 32 wind farms, 20 onshore and 12 in forested areas with a total of more than 2.5 GW installed wind capacity to explore development patterns. The paper examines four hypotheses related to characteristics of wind farms in emerging markets and investigating how project delays and progressive technological enhancements shape wind farm development. In this paper, we explain these results and conclude by extracting lessons from this analysis for creating wind power policy better aligned with developers’ interests.

Suggested Citation

  • Enevoldsen, Peter & Valentine, Scott Victor & Sovacool, Benjamin K., 2018. "Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development," Energy Policy, Elsevier, vol. 120(C), pages 1-7.
  • Handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:1-7
    DOI: 10.1016/j.enpol.2018.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518303227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 178-184.
    2. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
    3. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    4. Sovacool, Benjamin K. & Enevoldsen, Peter, 2015. "One style to build them all: Corporate culture and innovation in the offshore wind industry," Energy Policy, Elsevier, vol. 86(C), pages 402-415.
    5. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    6. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    7. Jefferson, Michael, 2008. "Accelerating the transition to sustainable energy systems," Energy Policy, Elsevier, vol. 36(11), pages 4116-4125, November.
    8. Jamil Khan, 2003. "Wind power planning in three Swedish municipalities," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 46(4), pages 563-581.
    9. Sovacool, Benjamin K. & Walter, Götz, 2018. "Major hydropower states, sustainable development, and energy security: Insights from a preliminary cross-comparative assessment," Energy, Elsevier, vol. 142(C), pages 1074-1082.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akintayo T. Abolude & Wen Zhou & Akintomide Afolayan Akinsanola, 2020. "Evaluation and Projections of Wind Power Resources over China for the Energy Industry Using CMIP5 Models," Energies, MDPI, vol. 13(10), pages 1-16, May.
    2. Pan, Lin & Wang, Xudong, 2020. "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, Elsevier, vol. 159(C), pages 221-237.
    3. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    4. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    5. Ye, Jianjun & Cheng, Yanglin & Xie, Junlong & Huang, Xiaohong & Zhang, Yuan & Hu, Siyao & Salem, Shehab & Wu, Jiejun, 2020. "Effects of divergent angle on the flow behaviors in low speed wind accelerating ducts," Renewable Energy, Elsevier, vol. 152(C), pages 1292-1301.
    6. Rybak, Aurelia & Rybak, Aleksandra & Kolev, Spas D., 2024. "Development of wind energy and access to REE. The case of Poland," Resources Policy, Elsevier, vol. 90(C).
    7. Lerche, J. & Lorentzen, S. & Enevoldsen, P. & Neve, H.H., 2022. "The impact of COVID -19 on offshore wind project productivity – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Enevoldsen, Peter & Permien, Finn-Hendrik & Bakhtaoui, Ines & Krauland, Anna-Katharina von & Jacobson, Mark Z. & Xydis, George & Sovacool, Benjamin K. & Valentine, Scott V. & Luecht, Daniel & Oxley, G, 2019. "How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas," Energy Policy, Elsevier, vol. 132(C), pages 1092-1100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    2. Enevoldsen, Peter & Permien, Finn-Hendrik & Bakhtaoui, Ines & Krauland, Anna-Katharina von & Jacobson, Mark Z. & Xydis, George & Sovacool, Benjamin K. & Valentine, Scott V. & Luecht, Daniel & Oxley, G, 2019. "How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas," Energy Policy, Elsevier, vol. 132(C), pages 1092-1100.
    3. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    4. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    5. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    7. Linnell, Peter, 2010. "Are Smaller Turbines the Way Forward for Wind Energy in Herefordshire?," MPRA Paper 58879, University Library of Munich, Germany.
    8. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
    9. Vuichard, Pascal & Stauch, Alexander & Wüstenhagen, Rolf, 2021. "Keep it local and low-key: Social acceptance of alpine solar power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," NBER Working Papers 19921, National Bureau of Economic Research, Inc.
    11. Linnell, Peter, 2010. "Are Smaller Turbines the Way Forward for Wind Energy in Herefordshire?," MPRA Paper 58227, University Library of Munich, Germany.
    12. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    13. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    14. Enevoldsen, Peter, 2018. "A socio-technical framework for examining the consequences of deforestation: A case study of wind project development in Northern Europe," Energy Policy, Elsevier, vol. 115(C), pages 138-147.
    15. Dali T. Laxton, 2019. "Innovations in the Wind Energy Sector," CERGE-EI Working Papers wp647, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    16. Peter Strachan & David Lal, 2004. "Wind Energy Policy, Planning and Management Practice in the UK: Hot Air or a Gathering Storm?," Regional Studies, Taylor & Francis Journals, vol. 38(5), pages 549-569.
    17. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    18. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    19. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Linnell, Peter, 2010. "Are Smaller Turbines the Way Forward for Wind Energy in Herefordshire?," MPRA Paper 58386, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:1-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.