IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224007618.html
   My bibliography  Save this article

Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft

Author

Listed:
  • Ekici, Selcuk
  • Ayar, Murat
  • Orhan, Ilkay
  • Karakoc, Tahir Hikmet

Abstract

This study conducts a comprehensive analysis of fuel consumption and emissions associated with the installation of the most commonly used engine combinations currently available on five distinct types of BADA 4 (Base of Aircraft Data), ANP (Aircraft Noise and Performance), and AEM (Advanced Emissions Model) aircraft supplied by two distinct aircraft manufacturers to the civil air transport sector. The comparison spans a total of 18 flight scenarios (90 flights) for each aircraft, ranging in altitude from FL300 to FL385. To achieve this, the research employs a comprehensive approach encompassing data acquisition from EUROCONTROL's Integrated Aircraft Noise and Emissions Modelling Platform (IMPACT), robust data analysis, and advanced statistical techniques. The goal of this study is to investigate variations in fuel consumption and emissions at different cruising altitudes for various commercial aircraft types, assessing the veracity of the commonly assumed decrease in fuel consumption and associated emissions with altitude, and exploring the impact of individual aircraft assessments on the precision and comprehensiveness of environmental impact assessments in civil aviation flight operations. The work seeks to answer the following the main research question: Does every aircraft's fuel consumption and related emissions truly decrease with increasing altitude, according to conventional methodologies and general assumptions?

Suggested Citation

  • Ekici, Selcuk & Ayar, Murat & Orhan, Ilkay & Karakoc, Tahir Hikmet, 2024. "Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007618
    DOI: 10.1016/j.energy.2024.130989
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Y.Y. & Christley, E. & Kulanovic, A. & Teng, C.C. & Björklund, A. & Nordensvärd, J. & Karakaya, E. & Urban, F., 2022. "Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Ekici, Selcuk & Ayar, Murat & Kilic, Ugur & Karakoc, T. Hikmet, 2023. "Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application," Journal of Air Transport Management, Elsevier, vol. 108(C).
    3. Julian Hoelzen & Yaolong Liu & Boris Bensmann & Christopher Winnefeld & Ali Elham & Jens Friedrichs & Richard Hanke-Rauschenbach, 2018. "Conceptual Design of Operation Strategies for Hybrid Electric Aircraft," Energies, MDPI, vol. 11(1), pages 1-26, January.
    4. Xirui Li & Junqi Tang & Weidong Li & Qingmin Si & Xinyao Guo & Linqing Niu, 2023. "A Bibliometric Analysis and Visualization of Aviation Carbon Emissions Studies," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    5. Aygun, Hakan & Turan, Onder, 2023. "Analysis of cruise conditions on energy, exergy and NOx emission parameters of a turbofan engine for middle-range aircraft," Energy, Elsevier, vol. 267(C).
    6. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    7. Ekici, Filiz & Orhan, Gamze & Gümüş, Öner & Bahce, Abdullah Burhan, 2022. "A policy on the externality problem and solution suggestions in air transportation: The environment and sustainability," Energy, Elsevier, vol. 258(C).
    8. Ekici, Selcuk & Ayar, Murat & Hikmet Karakoc, T., 2023. "Fuel-saving and emission accounting: An airliner case study for green engine selection," Energy, Elsevier, vol. 282(C).
    9. Ekici, Selcuk, 2020. "Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing," Energy, Elsevier, vol. 193(C).
    10. Aygun, Hakan & Dursun, Omer Osman & Toraman, Suat, 2023. "Machine learning based approach for forecasting emission parameters of mixed flow turbofan engine at high power modes," Energy, Elsevier, vol. 271(C).
    11. Ranasinghe, Kavindu & Guan, Kai & Gardi, Alessandro & Sabatini, Roberto, 2019. "Review of advanced low-emission technologies for sustainable aviation," Energy, Elsevier, vol. 188(C).
    12. Sofia Pinheiro Melo & Alexander Barke & Felipe Cerdas & Christian Thies & Mark Mennenga & Thomas S. Spengler & Christoph Herrmann, 2020. "Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    13. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2024. "Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight," Energy, Elsevier, vol. 296(C).
    2. Ekici, Selcuk & Ayar, Murat & Hikmet Karakoc, T., 2023. "Fuel-saving and emission accounting: An airliner case study for green engine selection," Energy, Elsevier, vol. 282(C).
    3. Ekici, Selcuk & Ayar, Murat & Kilic, Ugur & Karakoc, T. Hikmet, 2023. "Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application," Journal of Air Transport Management, Elsevier, vol. 108(C).
    4. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    5. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Performance and energy analysis of turboprop engine for air freighter aircraft with the aid of multiple regression," Energy, Elsevier, vol. 283(C).
    6. Warimani, Mahammadsalman & Azami, Muhammad Hanafi & Khan, Sher Afghan & Ismail, Ahmad Faris & Saharin, Sanisah & Ariffin, Ahmad Kamal, 2021. "Internal flow dynamics and performance of pulse detonation engine with alternative fuels," Energy, Elsevier, vol. 237(C).
    7. Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Influence of diversified dihedral stator on the thermodynamic performance and flow loss characteristics of a variable core driven fan stage," Energy, Elsevier, vol. 294(C).
    8. Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).
    9. Matthieu Pettes-Duler & Xavier Roboam & Bruno Sareni, 2022. "Integrated Optimal Design for Hybrid Electric Powertrain of Future Aircrafts," Energies, MDPI, vol. 15(18), pages 1-25, September.
    10. Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    11. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    12. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    13. Piotr Niedzielski & Magdalena Zioło & Jarosław Kozuba & Ewa Kuzionko-Ochrymiuk & Natalia Drop, 2021. "Analysis of the Relationship of the Degree of Aviation Sector Development with Greenhouse Gas Emissions and Measures of Economic Development in the European Union Countries," Energies, MDPI, vol. 14(13), pages 1-16, June.
    14. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    15. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    16. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    17. Winchester, Niven & Malina, Robert & Staples, Mark D. & Barrett, Steven R.H., 2015. "The impact of advanced biofuels on aviation emissions and operations in the U.S," Energy Economics, Elsevier, vol. 49(C), pages 482-491.
    18. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    19. Sheu, Jiuh-Biing, 2014. "Airline ambidextrous competition under an emissions trading scheme – A reference-dependent behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 115-145.
    20. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.