IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p177-d126526.html
   My bibliography  Save this article

Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization

Author

Listed:
  • Wim Munters

    (Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300A, 3001 Leuven, Belgium)

  • Johan Meyers

    (Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300A, 3001 Leuven, Belgium)

Abstract

In wind farms, wakes originating from upstream turbines cause reduced energy extraction and increased loading variability in downstream rows. The prospect of mitigating these detrimental effects through coordinated controllers at the wind-farm level has fueled a multitude of research efforts in wind-farm control. The main strategies in wind-farm control are to influence the velocity deficits in the wake by deviating from locally optimal axial induction setpoints on the one hand, and steering wakes away from downstream rows through yaw misalignment on the other hand. The current work investigates dynamic induction and yaw control of individual turbines for wind-farm power maximization in large-eddy simulations. To this end, receding-horizon optimal control techniques combined with continuous adjoint gradient evaluations are used. We study a 4 × 4 aligned wind farm, and find that for this farm layout yaw control is more effective than induction control, both for uniform and turbulent inflow conditions. Analysis of optimal yaw controls leads to the definition of two simplified yaw control strategies, in which wake meandering and wake redirection are exploited respectively. Furthermore it is found that dynamic yawing provides significant benefits over static yaw control in turbulent flow environments, whereas this is not the case for uniform inflow. Finally, the potential of combining overinductive axial induction control with yaw control is shown, with power gains that approximate the sum of those achieved by each control strategy separately.

Suggested Citation

  • Wim Munters & Johan Meyers, 2018. "Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization," Energies, MDPI, vol. 11(1), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:177-:d:126526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
    2. Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
    3. Jay P. Goit & Wim Munters & Johan Meyers, 2016. "Optimal Coordinated Control of Power Extraction in LES of a Wind Farm with Entrance Effects," Energies, MDPI, vol. 9(1), pages 1-20, January.
    4. Claire VerHulst & Charles Meneveau, 2015. "Altering Kinetic Energy Entrainment in Large Eddy Simulations of Large Wind Farms Using Unconventional Wind Turbine Actuator Forcing," Energies, MDPI, vol. 8(1), pages 1-17, January.
    5. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    6. Jinkyoo Park & Soon-Duck Kwon & Kincho Law, 2017. "A Data-Driven, Cooperative Approach for Wind Farm Control: A Wind Tunnel Experimentation," Energies, MDPI, vol. 10(7), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanvir Ahmad & Abdul Basit & Muneeb Ahsan & Olivier Coupiac & Nicolas Girard & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    2. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    3. Rafael V. Rodrigues & Corinne Lengsfeld, 2019. "Development of a Computational System to Improve Wind Farm Layout, Part I: Model Validation and Near Wake Analysis," Energies, MDPI, vol. 12(5), pages 1-24, March.
    4. Gao, Zhiteng & Li, Ye & Wang, Tongguang & Shen, Wenzhong & Zheng, Xiaobo & Pröbsting, Stefan & Li, Deshun & Li, Rennian, 2021. "Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions," Renewable Energy, Elsevier, vol. 172(C), pages 263-275.
    5. Gionfra, Nicolò & Sandou, Guillaume & Siguerdidjane, Houria & Faille, Damien & Loevenbruck, Philippe, 2019. "Wind farm distributed PSO-based control for constrained power generation maximization," Renewable Energy, Elsevier, vol. 133(C), pages 103-117.
    6. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    7. Yin, Xiuxing & Zhang, Wencan & Jiang, Zhansi & Pan, Li, 2020. "Data-driven multi-objective predictive control of offshore wind farm based on evolutionary optimization," Renewable Energy, Elsevier, vol. 160(C), pages 974-986.
    8. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
    9. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    10. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    11. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    12. Rubel C. Das & Yu-Lin Shen, 2023. "Analysis of Wind Farms under Different Yaw Angles and Wind Speeds," Energies, MDPI, vol. 16(13), pages 1-19, June.
    13. Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
    14. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    15. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments," Energy, Elsevier, vol. 141(C), pages 262-272.
    16. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    17. Bottasso, C.L. & Cacciola, S. & Schreiber, J., 2018. "Local wind speed estimation, with application to wake impingement detection," Renewable Energy, Elsevier, vol. 116(PA), pages 155-168.
    18. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    19. Cortina, G. & Sharma, V. & Calaf, M., 2017. "Investigation of the incoming wind vector for improved wind turbine yaw-adjustment under different atmospheric and wind farm conditions," Renewable Energy, Elsevier, vol. 101(C), pages 376-386.
    20. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:177-:d:126526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.