IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1266-d219207.html
   My bibliography  Save this article

Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms

Author

Listed:
  • Tanvir Ahmad

    (US Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology (UET), Peshawar 25000, Pakistan
    School of Engineering, Durham University, Durham DH1 3LE, UK)

  • Abdul Basit

    (US Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology (UET), Peshawar 25000, Pakistan)

  • Muneeb Ahsan

    (US Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology (UET), Peshawar 25000, Pakistan)

  • Olivier Coupiac

    (Engie Green, 59777 Lille, France)

  • Nicolas Girard

    (Engie Green, 59777 Lille, France)

  • Behzad Kazemtabrizi

    (School of Engineering, Durham University, Durham DH1 3LE, UK)

  • Peter C. Matthews

    (School of Engineering, Durham University, Durham DH1 3LE, UK)

Abstract

This paper presents, with a live field experiment, the potential of increasing wind farm power generation by optimally yawing upstream wind turbine for reducing wake effects as a part of the SmartEOLE project. Two 2MW turbines from the Le Sole de Moulin Vieux (SMV) wind farm are used for this purpose. The upstream turbine (SMV6) is operated with a yaw offset ( α ) in a range of − 12 ° to 8° for analysing the impact on the downstream turbine (SMV5). Simulations are performed with intelligent control strategies for estimating optimum α settings. Simulations show that optimal α can increase net production of the two turbines by more than 5%. The impact of α on SMV6 is quantified using the data obtained during the experiment. A comparison of the data obtained during the experiment is carried out with data obtained during normal operations in similar wind conditions. This comparison show that an optimum or near-optimum α increases net production by more than 5% in wake affected wind conditions, which is in confirmation with the simulated results.

Suggested Citation

  • Tanvir Ahmad & Abdul Basit & Muneeb Ahsan & Olivier Coupiac & Nicolas Girard & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1266-:d:219207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
    2. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    3. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús & González Rodríguez, Ángel Gaspar, 2015. "Maximizing the overall production of wind farms by setting the individual operating point of wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 219-229.
    4. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    5. Tanvir Ahmad & Abdul Basit & Juveria Anwar & Olivier Coupiac & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Fast Processing Intelligent Wind Farm Controller for Production Maximisation," Energies, MDPI, vol. 12(3), pages 1-17, February.
    6. Wim Munters & Johan Meyers, 2018. "Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization," Energies, MDPI, vol. 11(1), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jim Kuo & Kevin Pan & Ni Li & He Shen, 2020. "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, MDPI, vol. 13(4), pages 1-15, February.
    2. Aditya H. Bhatt & Mireille Rodrigues & Federico Bernardoni & Stefano Leonardi & Armin Zare, 2023. "Stochastic Dynamical Modeling of Wind Farm Turbulence," Energies, MDPI, vol. 16(19), pages 1-24, September.
    3. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gionfra, Nicolò & Sandou, Guillaume & Siguerdidjane, Houria & Faille, Damien & Loevenbruck, Philippe, 2019. "Wind farm distributed PSO-based control for constrained power generation maximization," Renewable Energy, Elsevier, vol. 133(C), pages 103-117.
    2. Jim Kuo & Kevin Pan & Ni Li & He Shen, 2020. "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, MDPI, vol. 13(4), pages 1-15, February.
    3. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
    4. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    5. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    6. Rafael V. Rodrigues & Corinne Lengsfeld, 2019. "Development of a Computational System to Improve Wind Farm Layout, Part I: Model Validation and Near Wake Analysis," Energies, MDPI, vol. 12(5), pages 1-24, March.
    7. Mou Lin & Fernando Porté-Agel, 2023. "Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control," Energies, MDPI, vol. 16(6), pages 1-17, March.
    8. Tanvir Ahmad & Abdul Basit & Juveria Anwar & Olivier Coupiac & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Fast Processing Intelligent Wind Farm Controller for Production Maximisation," Energies, MDPI, vol. 12(3), pages 1-17, February.
    9. Mingcan Li & Hanbin Xiao & Lin Pan & Chengjun Xu, 2019. "Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms," Energies, MDPI, vol. 12(5), pages 1-32, March.
    10. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    11. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    12. Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
    13. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    14. Javier Serrano González & Bruno López & Martín Draper, 2021. "Optimal Pitch Angle Strategy for Energy Maximization in Offshore Wind Farms Considering Gaussian Wake Model," Energies, MDPI, vol. 14(4), pages 1-18, February.
    15. Lo Brutto, Ottavio A. & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2017. "Assessing the effectiveness of a global optimum strategy within a tidal farm for power maximization," Applied Energy, Elsevier, vol. 204(C), pages 653-666.
    16. Boersma, S. & Doekemeijer, B.M. & Siniscalchi-Minna, S. & van Wingerden, J.W., 2019. "A constrained wind farm controller providing secondary frequency regulation: An LES study," Renewable Energy, Elsevier, vol. 134(C), pages 639-652.
    17. Wim Munters & Johan Meyers, 2018. "Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization," Energies, MDPI, vol. 11(1), pages 1-32, January.
    18. Carl R. Shapiro & Genevieve M. Starke & Charles Meneveau & Dennice F. Gayme, 2019. "A Wake Modeling Paradigm for Wind Farm Design and Control," Energies, MDPI, vol. 12(15), pages 1-19, August.
    19. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    20. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1266-:d:219207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.