IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v257y2020ics0306261919316903.html
   My bibliography  Save this article

Dynamic wake modulation induced by utility-scale wind turbine operation

Author

Listed:
  • Abraham, Aliza
  • Hong, Jiarong

Abstract

Understanding wind turbine wake mixing and recovery is critical for improving the power generation and structural stability of downwind turbines in a wind farm. In the field, where incoming flow and turbine operation are constantly changing, the rate of wake recovery can be significantly influenced by dynamic wake modulation, which has not yet been explored. Here we present the first investigation of dynamic wake modulation in the near wake of an operational utility-scale wind turbine, and quantify its relationship with changing conditions. This experimental investigation is enabled using novel super-large-scale flow visualization with natural snowfall, providing unprecedented spatiotemporal resolution to resolve instantaneous changes of the wake envelope in the field. These measurements reveal the significant influence of dynamic wake modulation, which causes an increase in flux across the wake boundary of 11% on average, on wake recovery, providing insights into necessary modifications to traditional wake and farm models. Further, our study uncovers the direct connection between dynamic wake modulation and operational parameters readily available to the turbine controller such as yaw error, blade pitch, and tip speed ratio. These connections pave the way for more precise wake prediction and control algorithms under field conditions for wind farm optimization.

Suggested Citation

  • Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316903
    DOI: 10.1016/j.apenergy.2019.114003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    2. J. K. Lundquist & K. K. DuVivier & D. Kaffine & J. M. Tomaszewski, 2019. "Publisher Correction: Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development," Nature Energy, Nature, vol. 4(3), pages 251-251, March.
    3. J. K. Lundquist & K. K. DuVivier & D. Kaffine & J. M. Tomaszewski, 2019. "Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development," Nature Energy, Nature, vol. 4(1), pages 26-34, January.
    4. Tanvir Ahmad & Abdul Basit & Muneeb Ahsan & Olivier Coupiac & Nicolas Girard & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    5. Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
    6. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    7. Wim Munters & Johan Meyers, 2018. "Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization," Energies, MDPI, vol. 11(1), pages 1-32, January.
    8. Michael F. Howland & John O. Dabiri, 2019. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning," Energies, MDPI, vol. 12(14), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derek Micheletto & Jens H. M. Fransson & Antonio Segalini, 2023. "Experimental Study of the Transient Behavior of a Wind Turbine Wake Following Yaw Actuation," Energies, MDPI, vol. 16(13), pages 1-16, July.
    2. Hui Liu & Peng Wang & Teyang Zhao & Zhenggang Fan & Houlin Pan, 2022. "A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms," Energies, MDPI, vol. 15(8), pages 1-23, April.
    3. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    4. Wen, Jiahao & Zhou, Lei & Zhang, Hongfu, 2023. "Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 263(PA).
    5. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Abraham, Aliza & Hong, Jiarong, 2021. "Operational-dependent wind turbine wake impact on surface momentum flux," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Paxis Marques João Roque & Shyama Pada Chowdhury & Zhongjie Huan, 2021. "Performance Enhancement of Proposed Namaacha Wind Farm by Minimising Losses Due to the Wake Effect: A Mozambican Case Study," Energies, MDPI, vol. 14(14), pages 1-22, July.
    8. Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    2. Michael F. Howland & John O. Dabiri, 2019. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning," Energies, MDPI, vol. 12(14), pages 1-21, July.
    3. Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
    4. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
    5. Aditya H. Bhatt & Mireille Rodrigues & Federico Bernardoni & Stefano Leonardi & Armin Zare, 2023. "Stochastic Dynamical Modeling of Wind Farm Turbulence," Energies, MDPI, vol. 16(19), pages 1-24, September.
    6. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    7. Tanvir Ahmad & Abdul Basit & Muneeb Ahsan & Olivier Coupiac & Nicolas Girard & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    8. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    9. Carl R. Shapiro & Genevieve M. Starke & Charles Meneveau & Dennice F. Gayme, 2019. "A Wake Modeling Paradigm for Wind Farm Design and Control," Energies, MDPI, vol. 12(15), pages 1-19, August.
    10. Cuevas-Figueroa, Gabriel & Stansby, Peter K. & Stallard, Timothy, 2022. "Accuracy of WRF for prediction of operational wind farm data and assessment of influence of upwind farms on power production," Energy, Elsevier, vol. 254(PB).
    11. Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
    12. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    13. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    14. Ericson, Sean J. & Kaffine, Daniel T. & Maniloff, Peter, 2020. "Costs of increasing oil and gas setbacks are initially modest but rise sharply," Energy Policy, Elsevier, vol. 146(C).
    15. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    16. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    17. Lehmann, Paul & Tafarte, Philip, 2024. "Exclusion zones for renewable energy deployment: One man’s blessing, another man’s curse," Resource and Energy Economics, Elsevier, vol. 76(C).
    18. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    19. Robert Wade & Geraint Ellis, 2022. "Reclaiming the Windy Commons: Landownership, Wind Rights, and the Assetization of Renewable Resources," Energies, MDPI, vol. 15(10), pages 1-31, May.
    20. van den Broek, Maarten J. & De Tavernier, Delphine & Sanderse, Benjamin & van Wingerden, Jan-Willem, 2022. "Adjoint optimisation for wind farm flow control with a free-vortex wake model," Renewable Energy, Elsevier, vol. 201(P1), pages 752-765.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.