IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124014253.html
   My bibliography  Save this article

Optimization of wind farm power output using wake redirection control

Author

Listed:
  • Balakrishnan, Raj Kiran
  • Son, Eunkuk
  • Hur, Sung-ho

Abstract

The wake effect, which is caused by the upstream turbines in a wind farm, adversely affects the efficiency of downstream turbines, leading to reduced energy generation and increased turbine fatigue loading. To mitigate this effect, a real-time wind farm control technique, i.e., wake redirection control (WRC), employing teaching learning-based optimization (TLBO) is introduced. This technique redirects the wakes away from the downstream turbines in real time, allowing them to generate more power by sacrificing some of the power generated by the upstream turbines. As a result, the total power generated by the wind farm is maximized. A low-fidelity 20-turbine real-life offshore wind farm is modeled and simulated in FLORISSE_M, the MATLAB version of the FLORIS (FLOw Redirection and Induction in Steady-state). The power produced by the wind farm model is maximized in real time by employing TLBO. The optimization results (i.e., the optimized yaw angles) are validated using the corresponding high-fidelity wind farm model developed in SOWFA (Simulator fOr Wind Farm Applications). Various results are presented to demonstrate that the TLBO-based WRC positively affects the power generated by the wind farm.

Suggested Citation

  • Balakrishnan, Raj Kiran & Son, Eunkuk & Hur, Sung-ho, 2024. "Optimization of wind farm power output using wake redirection control," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014253
    DOI: 10.1016/j.renene.2024.121357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.