IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp151-165.html
   My bibliography  Save this article

A data-driven, cooperative wind farm control to maximize the total power production

Author

Listed:
  • Park, Jinkyoo
  • Law, Kincho H.

Abstract

This study investigates the feasibility of using a data-driven optimization approach to determine the coordinated control actions of wind turbines that maximize the total wind farm power production. Conventionally, for a given wind condition, an individual wind turbine maximizes its own power production without taking into consideration the conditions of other wind turbines. Under this greedy control strategy, the wake formed by the upstream wind turbine, resulting in reduced wind speed and increased turbulence intensity inside the wake, would affect and lower the power productions of the downstream wind turbines. To increase the overall wind farm power production, cooperative wind turbine control approaches have been proposed to coordinate the control actions that mitigate the wake interference among the wind turbines and would thus increase the total wind farm power production. This study explores the use of a data-driven approach to identify the optimum coordinated control actions of the wind turbines using limited amount of data. Specifically, we study the feasibility of the Bayesian Ascent (BA) algorithm, a probabilistic optimization algorithm based on non-parametric Gaussian Process regression technique, for the wind farm power maximization problem. The BA algorithm is employed to maximize an analytical wind farm power function that is constructed based on wind farm configurations and wind conditions. The results show that the BA algorithm can achieve a monotonic increase in the total wind farm power production using a small number of function evaluations and has the potentials to be used for real-time wind farm control.

Suggested Citation

  • Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:151-165
    DOI: 10.1016/j.apenergy.2015.11.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915015147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.11.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohd Ashraf Ahmad & Shun-ichi Azuma & Toshiharu Sugie, 2014. "A Model-Free Approach for Maximizing Power Production of Wind Farm Using Multi-Resolution Simultaneous Perturbation Stochastic Approximation," Energies, MDPI, vol. 7(9), pages 1-23, August.
    2. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    3. Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    2. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    3. Rubel C. Das & Yu-Lin Shen, 2023. "Analysis of Wind Farms under Different Yaw Angles and Wind Speeds," Energies, MDPI, vol. 16(13), pages 1-19, June.
    4. Jay P. Goit & Wim Munters & Johan Meyers, 2016. "Optimal Coordinated Control of Power Extraction in LES of a Wind Farm with Entrance Effects," Energies, MDPI, vol. 9(1), pages 1-20, January.
    5. Harsh S. Dhiman & Dipankar Deb & Vlad Muresan & Valentina E. Balas, 2019. "Wake Management in Wind Farms: An Adaptive Control Approach," Energies, MDPI, vol. 12(7), pages 1-18, April.
    6. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    7. Guo-Wei Qian & Takeshi Ishihara, 2018. "A New Analytical Wake Model for Yawed Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
    8. Can Zhang & Jisheng Zhang & Athanasios Angeloudis & Yudi Zhou & Stephan C. Kramer & Matthew D. Piggott, 2023. "Physical Modelling of Tidal Stream Turbine Wake Structures under Yaw Conditions," Energies, MDPI, vol. 16(4), pages 1-21, February.
    9. De-Zhi Wei & Ni-Na Wang & De-Cheng Wan, 2021. "Modelling Yawed Wind Turbine Wakes: Extension of a Gaussian-Based Wake Model," Energies, MDPI, vol. 14(15), pages 1-26, July.
    10. Johlas, Hannah M. & Schmidt, David P. & Lackner, Matthew A., 2022. "Large eddy simulations of curled wakes from tilted wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 349-360.
    11. Jinkyoo Park & Soon-Duck Kwon & Kincho Law, 2017. "A Data-Driven, Cooperative Approach for Wind Farm Control: A Wind Tunnel Experimentation," Energies, MDPI, vol. 10(7), pages 1-17, June.
    12. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    13. Tanvir Ahmad & Abdul Basit & Muneeb Ahsan & Olivier Coupiac & Nicolas Girard & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    14. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    15. Bottasso, C.L. & Cacciola, S. & Schreiber, J., 2018. "Local wind speed estimation, with application to wake impingement detection," Renewable Energy, Elsevier, vol. 116(PA), pages 155-168.
    16. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    17. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    18. Cortina, G. & Sharma, V. & Calaf, M., 2017. "Investigation of the incoming wind vector for improved wind turbine yaw-adjustment under different atmospheric and wind farm conditions," Renewable Energy, Elsevier, vol. 101(C), pages 376-386.
    19. He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
    20. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:151-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.