IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v116y2018ipap155-168.html
   My bibliography  Save this article

Local wind speed estimation, with application to wake impingement detection

Author

Listed:
  • Bottasso, C.L.
  • Cacciola, S.
  • Schreiber, J.

Abstract

Wind condition awareness is an important factor to maximize power extraction, reduce fatigue loading and increase the power quality of wind turbines and wind power plants. This paper presents a new method for wind speed estimation based on blade load measurements. Starting from the definition of a cone coefficient, which captures the collective zeroth-harmonic of the out-of-plane blade bending moment, a rotor-effective wind speed estimator is introduced. The proposed observer exhibits a performance similar to the well known torque balance estimator. However, while the latter only measures the average wind speed over the whole rotor disk, the proposed approach can also be applied locally, resulting in estimates of the wind speed in different regions of the rotor disk. In the present work, the proposed method is used to estimate the average wind speed over four rotor quadrants. The top and bottom quadrants are used for estimating the vertical shear profile, while the two lateral ones for detecting the presence of a wake shed by an upstream wind turbine. The resulting wake detector can find applicability in wind farm control, by indicating on which side of the rotor the upstream wake is impinging. The new approach is demonstrated with the help of field test data, as well as simulations performed with high-fidelity aeroservoelastic models.

Suggested Citation

  • Bottasso, C.L. & Cacciola, S. & Schreiber, J., 2018. "Local wind speed estimation, with application to wake impingement detection," Renewable Energy, Elsevier, vol. 116(PA), pages 155-168.
  • Handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:155-168
    DOI: 10.1016/j.renene.2017.09.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117309072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.09.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bottasso, C.L. & Riboldi, C.E.D., 2014. "Estimation of wind misalignment and vertical shear from blade loads," Renewable Energy, Elsevier, vol. 62(C), pages 293-302.
    2. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    3. Bottasso, C.L. & Riboldi, C.E.D., 2015. "Validation of a wind misalignment observer using field test data," Renewable Energy, Elsevier, vol. 74(C), pages 298-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lio, Wai Hou & Larsen, Gunner Chr. & Thorsen, Gunhild R., 2021. "Dynamic wake tracking using a cost-effective LiDAR and Kalman filtering: Design, simulation and full-scale validation," Renewable Energy, Elsevier, vol. 172(C), pages 1073-1086.
    2. Kim, Kwang-Ho & Bertelè, Marta & Bottasso, Carlo L., 2023. "Wind inflow observation from load harmonics via neural networks: A simulation and field study," Renewable Energy, Elsevier, vol. 204(C), pages 300-312.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Kwang-Ho & Bertelè, Marta & Bottasso, Carlo L., 2023. "Wind inflow observation from load harmonics via neural networks: A simulation and field study," Renewable Energy, Elsevier, vol. 204(C), pages 300-312.
    2. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    3. He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
    4. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    5. Su, Keye & Bliss, Donald, 2019. "A novel hybrid free-wake model for wind turbine performance and wake evolution," Renewable Energy, Elsevier, vol. 131(C), pages 977-992.
    6. Aju, Emmanuvel Joseph & Kumar, Devesh & Leffingwell, Melissa & Rotea, Mario A. & Jin, Yaqing, 2023. "The influence of yaw misalignment on turbine power output fluctuations and unsteady aerodynamic loads within wind farms," Renewable Energy, Elsevier, vol. 215(C).
    7. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    8. Mou Lin & Fernando Porté-Agel, 2023. "Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control," Energies, MDPI, vol. 16(6), pages 1-17, March.
    9. Gao, Zhiteng & Li, Ye & Wang, Tongguang & Shen, Wenzhong & Zheng, Xiaobo & Pröbsting, Stefan & Li, Deshun & Li, Rennian, 2021. "Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions," Renewable Energy, Elsevier, vol. 172(C), pages 263-275.
    10. Harsh S. Dhiman & Dipankar Deb & Vlad Muresan & Valentina E. Balas, 2019. "Wake Management in Wind Farms: An Adaptive Control Approach," Energies, MDPI, vol. 12(7), pages 1-18, April.
    11. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    12. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    13. David Bastine & Björn Witha & Matthias Wächter & Joachim Peinke, 2015. "Towards a Simplified DynamicWake Model Using POD Analysis," Energies, MDPI, vol. 8(2), pages 1-26, January.
    14. Maarten T. van Beek & Axelle Viré & Søren J. Andersen, 2021. "Sensitivity and Uncertainty of the FLORIS Model Applied on the Lillgrund Wind Farm," Energies, MDPI, vol. 14(5), pages 1-21, February.
    15. Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
    16. Xiong, Xue-Lu & Lyu, Pin & Chen, Wen-Li & Li, Hui, 2020. "Self-similarity in the wake of a semi-submersible offshore wind turbine considering the interaction with the wake of supporting platform," Renewable Energy, Elsevier, vol. 156(C), pages 328-341.
    17. Lio, Wai Hou & Larsen, Gunner Chr. & Thorsen, Gunhild R., 2021. "Dynamic wake tracking using a cost-effective LiDAR and Kalman filtering: Design, simulation and full-scale validation," Renewable Energy, Elsevier, vol. 172(C), pages 1073-1086.
    18. Guo-Wei Qian & Takeshi Ishihara, 2018. "A New Analytical Wake Model for Yawed Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
    19. Dhiman, Harsh S. & Deb, Dipankar, 2020. "Wake management based life enhancement of battery energy storage system for hybrid wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    20. Wim Munters & Johan Meyers, 2018. "Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization," Energies, MDPI, vol. 11(1), pages 1-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:155-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.