IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2819-d176759.html
   My bibliography  Save this article

Islanding Detection of Synchronous Distributed Generator Based on the Active and Reactive Power Control Loops

Author

Listed:
  • Reza Zamani

    (Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran)

  • Mohamad-Esmail Hamedani-Golshan

    (Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran)

  • Hassan Haes Alhelou

    (Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
    Department of Electrical Power Engineering, Faculty of Mechanical and Electrical Engineering, Tishreen University, 2230 Lattakia, Syria)

  • Pierluigi Siano

    (Department of Management & Innovation Systems, University of Salerno, 84084 Salerno, Italy)

  • Hemanshu R. Pota

    (School of Engineering and Information Technology, The University of New South Wales, Canberra 2610, Australia)

Abstract

There has been a considerable importance for the islanding detection due to the growing integration of distributed generations (DGs) in the modern power grids. This paper proposes a novel active islanding detection scheme for synchronous DGs, considering two additional compensators and a positive feedback for each of active and reactive power control loops. The added blocks are designed using the small gain theorem and stability margins definition considering characteristics of open loop transfer functions of synchronous DG control loops. Islanding can be detected using the proposed method even where there is an exact match between generation and local load without sacrificing power quality. In addition, the performance of the proposed method can be retained even with high penetration of motor loads. The proposed scheme improves the stability and power quality of the grid, when the synchronous DG is subjected to the grid-connected disturbances. Furthermore, this method augments the stability margins of the system in the grid-connected conditions to enhance the disturbances ride-through capability of the system and reduce the negative impact of the active methods on the power quality. Simultaneous advantages of the proposed scheme are demonstrated by modeling a test system in MATLAB software and time-domain simulation achieved by PSCAD.

Suggested Citation

  • Reza Zamani & Mohamad-Esmail Hamedani-Golshan & Hassan Haes Alhelou & Pierluigi Siano & Hemanshu R. Pota, 2018. "Islanding Detection of Synchronous Distributed Generator Based on the Active and Reactive Power Control Loops," Energies, MDPI, vol. 11(10), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2819-:d:176759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arash Abyaz & Habib Panahi & Reza Zamani & Hassan Haes Alhelou & Pierluigi Siano & Miadreza Shafie-khah & Mimmo Parente, 2019. "An Effective Passive Islanding Detection Algorithm for Distributed Generations," Energies, MDPI, vol. 12(16), pages 1-19, August.
    2. Faisal Mumtaz & Kashif Imran & Abdullah Abusorrah & Syed Basit Ali Bukhari, 2023. "An Extensive Overview of Islanding Detection Strategies of Active Distributed Generations in Sustainable Microgrids," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    3. Karthikeyan Subramanian & Ashok Kumar Loganathan, 2020. "Islanding Detection Using a Micro-Synchrophasor for Distribution Systems with Distributed Generation," Energies, MDPI, vol. 13(19), pages 1-31, October.
    4. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    5. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    2. Amil Daraz & Suheel Abdullah Malik & Ihsan Ul Haq & Khan Bahadar Khan & Ghulam Fareed Laghari & Farhan Zafar, 2020. "Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    3. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    4. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    5. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    6. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    7. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    8. Solomon Feleke & Balamurali Pydi & Raavi Satish & Degarege Anteneh & Kareem M. AboRas & Hossam Kotb & Mohammed Alharbi & Mohamed Abuagreb, 2023. "DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    9. Mohammed Alharbi & Muhammad Ragab & Kareem M. AboRas & Hossam Kotb & Masoud Dashtdar & Mokhtar Shouran & Elmazeg Elgamli, 2023. "Innovative AVR-LFC Design for a Multi-Area Power System Using Hybrid Fractional-Order PI and PIDD 2 Controllers Based on Dandelion Optimizer," Mathematics, MDPI, vol. 11(6), pages 1-45, March.
    10. Danny Ochoa & Sergio Martinez, 2021. "Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems," Energies, MDPI, vol. 14(12), pages 1-22, June.
    11. M. Ebrahim Adabi & Bogdan Marinescu, 2022. "Direct Participation of Dynamic Virtual Power Plants in Secondary Frequency Control," Energies, MDPI, vol. 15(8), pages 1-15, April.
    12. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    13. Bi-Ying Chen & Xing-Chen Shangguan & Li Jin & Dan-Yun Li, 2020. "An Improved Stability Criterion for Load Frequency Control of Power Systems with Time-Varying Delays," Energies, MDPI, vol. 13(8), pages 1-14, April.
    14. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    15. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    16. Sadeq D. Al-Majidi & Hisham Dawood Salman Altai & Mohammed H. Lazim & Mohammed Kh. Al-Nussairi & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2023. "Bacterial Foraging Algorithm for a Neural Network Learning Improvement in an Automatic Generation Controller," Energies, MDPI, vol. 16(6), pages 1-19, March.
    17. Hossam Hassan Ali & Ahmed Fathy & Abdullah M. Al-Shaalan & Ahmed M. Kassem & Hassan M. H. Farh & Abdullrahman A. Al-Shamma’a & Hossam A. Gabbar, 2021. "A Novel Sooty Terns Algorithm for Deregulated MPC-LFC Installed in Multi-Interconnected System with Renewable Energy Plants," Energies, MDPI, vol. 14(17), pages 1-27, August.
    18. Sadeq D. Al-Majidi & Mohammed Kh. AL-Nussairi & Ali Jasim Mohammed & Adel Manaa Dakhil & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2022. "Design of a Load Frequency Controller Based on an Optimal Neural Network," Energies, MDPI, vol. 15(17), pages 1-28, August.
    19. Ashraf Khalil & Ang Swee Peng, 2018. "A New Method for Computing the Delay Margin for the Stability of Load Frequency Control Systems," Energies, MDPI, vol. 11(12), pages 1-18, December.
    20. Krishan Arora & Ashok Kumar & Vikram Kumar Kamboj & Deepak Prashar & Bhanu Shrestha & Gyanendra Prasad Joshi, 2021. "Impact of Renewable Energy Sources into Multi Area Multi-Source Load Frequency Control of Interrelated Power System," Mathematics, MDPI, vol. 9(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2819-:d:176759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.