IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312861.html
   My bibliography  Save this article

Optimal energy management for formula-E cars with regulatory limits and thermal constraints

Author

Listed:
  • Liu, Xuze
  • Fotouhi, Abbas
  • Auger, Daniel J.

Abstract

In this paper, novel solutions are proposed for energy and thermal management in Formula-E cars using optimal control theory. Optimal control techniques are used to optimize net energy consumption (accounting for loss-reductions from energy recovery from regenerative braking) to achieve minimal lap time which is a crucial element in developing a competitive race strategy in Formula E races. A thermal battery model is used to impose thermal constraints on the optimal energy management strategy in order to realistically capture working constraints during a race. The effects of energy and thermal constraints on the proposed strategy are then demonstrated and two different pedal lifting techniques were introduced. Both the current second generation and a concept third generation type of formula-E cars are studied and compared. While third generation is significantly more efficient with 10% to 30% less energy consumption, it potentially faces more critical thermal issues with more than 60% more heat generation.

Suggested Citation

  • Liu, Xuze & Fotouhi, Abbas & Auger, Daniel J., 2020. "Optimal energy management for formula-E cars with regulatory limits and thermal constraints," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312861
    DOI: 10.1016/j.apenergy.2020.115805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wieczorek, Maciej & Lewandowski, Mirosław, 2017. "A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm," Applied Energy, Elsevier, vol. 192(C), pages 222-233.
    2. Hou, Cong & Ouyang, Minggao & Xu, Liangfei & Wang, Hewu, 2014. "Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 115(C), pages 174-189.
    3. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Hou, Jun & Han, Xuebing & Ouyang, Minggao, 2014. "Energy management strategies comparison for electric vehicles with hybrid energy storage system," Applied Energy, Elsevier, vol. 134(C), pages 321-331.
    4. Chuanxue Song & Yulong Shao & Shixin Song & Cheng Chang & Fang Zhou & Silun Peng & Feng Xiao, 2017. "Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control," Energies, MDPI, vol. 10(3), pages 1-13, March.
    5. Chen, Zheng & Xia, Bing & You, Chenwen & Mi, Chunting Chris, 2015. "A novel energy management method for series plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 172-179.
    6. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duhr, Pol & Christodoulou, Grigorios & Balerna, Camillo & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher H., 2021. "Time-optimal gearshift and energy management strategies for a hybrid electric race car," Applied Energy, Elsevier, vol. 282(PA).
    2. Camillo Balerna & Marc-Philippe Neumann & Nicolò Robuschi & Pol Duhr & Alberto Cerofolini & Vittorio Ravaglioli & Christopher Onder, 2020. "Time-Optimal Low-Level Control and Gearshift Strategies for the Formula 1 Hybrid Electric Powertrain," Energies, MDPI, vol. 14(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    3. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    4. Bảo-Huy Nguyễn & João Pedro F. Trovão & Ronan German & Alain Bouscayrol, 2020. "Real-Time Energy Management of Parallel Hybrid Electric Vehicles Using Linear Quadratic Regulation," Energies, MDPI, vol. 13(21), pages 1-19, October.
    5. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    6. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    7. Sánchez, Marcelino & Delprat, Sébastien & Hofman, Theo, 2020. "Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach," Applied Energy, Elsevier, vol. 260(C).
    8. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    9. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    10. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    11. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    12. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    13. Wu, Gang & Wang, Chunyan & Zhao, Wanzhong & Meng, Qikang, 2023. "Integrated energy management of hybrid power supply based on short-term speed prediction," Energy, Elsevier, vol. 262(PB).
    14. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    15. Yuping Zeng & Yang Cai & Changbao Chu & Guiyue Kou & Wei Gao, 2018. "Integrated Energy and Catalyst Thermal Management for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-29, July.
    16. Hong Zhang & Zhuang Xing & Jiajian Song & Qiangqiang Yang, 2018. "Development and Test Application of an Auxiliary Power-Integrated System," Energies, MDPI, vol. 11(1), pages 1-18, January.
    17. Li, Junqiu & Jin, Xin & Xiong, Rui, 2017. "Multi-objective optimization study of energy management strategy and economic analysis for a range-extended electric bus," Applied Energy, Elsevier, vol. 194(C), pages 798-807.
    18. Song, Ziyou & Li, Jianqiu & Hou, Jun & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study," Energy, Elsevier, vol. 154(C), pages 433-441.
    19. Li, Junqiu & Wang, Yihe & Chen, Jianwen & Zhang, Xiaopeng, 2017. "Study on energy management strategy and dynamic modeling for auxiliary power units in range-extended electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 363-375.
    20. Peng, Fei & Zhao, Yuanzhe & Chen, Ting & Zhang, Xuexia & Chen, Weirong & Zhou, Donghua & Li, Qi, 2018. "Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation," Applied Energy, Elsevier, vol. 226(C), pages 503-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.