IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v6y2016i2p26-d71221.html
   My bibliography  Save this article

Selection and Breeding of Suitable Crop Genotypes for Drought and Heat Periods in a Changing Climate: Which Morphological and Physiological Properties Should Be Considered?

Author

Listed:
  • Lyudmila Simova-Stoilova

    (Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria)

  • Valya Vassileva

    (Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria)

  • Urs Feller

    (Institute of Plant Sciences and Oeschger Center for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland)

Abstract

Selection and breeding of genotypes with improved drought/heat tolerance become key issues in the course of global change with predicted increased frequency of droughts or heat waves. Several morphological and physiological plant traits must be considered. Rooting depth, root branching, nutrient acquisition, mycorrhization, nodulation in legumes and the release of nutrients, assimilates or phytohormones to the shoot are relevant in root systems. Xylem embolism and its repair after a drought, development of axillary buds and solute channeling via xylem (acropetal) and phloem (basipetal and acropetal) are key processes in the stem. The photosynthetically active biomass depends on leaf expansion and senescence. Cuticle thickness and properties, epicuticular waxes, stomatal regulation including responses to phytohormones, stomatal plugs and mesophyll resistance are involved in optimizing leaf water relations. Aquaporins, dehydrins, enzymes involved in the metabolism of compatible solutes (e.g., proline) and Rubisco activase are examples for proteins involved in heat or drought susceptibility. Assimilate redistribution from leaves to maturing fruits via the phloem influences yield quantity and quality. Proteomic analyses allow a deeper insight into the network of stress responses and may serve as a basis to identify suitable genotypes, although improved stress tolerance will have its price (often lowered productivity under optimal conditions).

Suggested Citation

  • Lyudmila Simova-Stoilova & Valya Vassileva & Urs Feller, 2016. "Selection and Breeding of Suitable Crop Genotypes for Drought and Heat Periods in a Changing Climate: Which Morphological and Physiological Properties Should Be Considered?," Agriculture, MDPI, vol. 6(2), pages 1-19, June.
  • Handle: RePEc:gam:jagris:v:6:y:2016:i:2:p:26-:d:71221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/6/2/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/6/2/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangjie Ren & Yitong Zhang & Shiyang Guo & Ben Wang & Siqi Wang & Wei Gao, 2023. "Pipe Cavitation Parameters Reveal Bubble Embolism Dynamics in Maize Xylem Vessels across Water Potential Gradients," Agriculture, MDPI, vol. 13(10), pages 1-17, September.
    2. Philippe Etienne & Sylvain Diquelou & Marion Prudent & Christophe Salon & Anne Maillard & Alain Ourry, 2018. "Macro and Micronutrient Storage in Plants and Their Remobilization When Facing Scarcity: The Case of Drought," Agriculture, MDPI, vol. 8(1), pages 1-17, January.
    3. Urs Feller & Stanislav Kopriva & Valya Vassileva, 2018. "Plant Nutrient Dynamics in Stressful Environments: Needs Interfere with Burdens," Agriculture, MDPI, vol. 8(7), pages 1-6, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoe E. Petropoulos & Oriana Ramirez-Rubio & Madeleine K. Scammell & Rebecca L. Laws & Damaris Lopez-Pilarte & Juan José Amador & Joan Ballester & Cristina O’Callaghan-Gordo & Daniel R. Brooks, 2021. "Climate Trends at a Hotspot of Chronic Kidney Disease of Unknown Causes in Nicaragua, 1973–2014," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    2. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    3. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    4. Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    5. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    6. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    7. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    8. Jie Chen & Yujie Liu & Tao Pan & Philippe Ciais & Ting Ma & Yanhua Liu & Dai Yamazaki & Quansheng Ge & Josep Peñuelas, 2020. "Global socioeconomic exposure of heat extremes under climate change," Post-Print hal-02970803, HAL.
    9. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Molly Anderson, 2015. "The role of knowledge in building food security resilience across food system domains," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 543-559, December.
    11. Frances C. Moore, 2017. "Learning, Adaptation, And Weather In A Changing Climate," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-21, November.
    12. Dae II Jeong & Alex J. Cannon & Bin Yu, 2022. "Influences of atmospheric blocking on North American summer heatwaves in a changing climate: a comparison of two Canadian Earth system model large ensembles," Climatic Change, Springer, vol. 172(1), pages 1-21, May.
    13. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    14. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    17. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Auke M. Woude & Wouter Peters & Emilie Joetzjer & Sébastien Lafont & Gerbrand Koren & Philippe Ciais & Michel Ramonet & Yidi Xu & Ana Bastos & Santiago Botía & Stephen Sitch & Remco Kok & Tobias Kneue, 2023. "Temperature extremes of 2022 reduced carbon uptake by forests in Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Jiale Zhao & Fuqiang Yang & Yong Guo & Xin Ren, 2022. "A CAST-Based Analysis of the Metro Accident That Was Triggered by the Zhengzhou Heavy Rainstorm Disaster," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    20. N. Naveena & G. Ch. Satyanarayana & D. V. Bhaskar Rao & D. Srinivas, 2021. "An accentuated “hot blob” over Vidarbha, India, during the pre-monsoon season," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1359-1373, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:6:y:2016:i:2:p:26-:d:71221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.