IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i1p14-d127176.html
   My bibliography  Save this article

Macro and Micronutrient Storage in Plants and Their Remobilization When Facing Scarcity: The Case of Drought

Author

Listed:
  • Philippe Etienne

    (Université de Caen Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, CS 14032, 14032 Caen CEDEX 5, France
    INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, CS 14032, 14032 Caen CEDEX 5, France)

  • Sylvain Diquelou

    (Université de Caen Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, CS 14032, 14032 Caen CEDEX 5, France
    INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, CS 14032, 14032 Caen CEDEX 5, France
    PLATIN’, Plateau d’Isotopie de Normandie, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032 Caen CEDEX 5, France)

  • Marion Prudent

    (Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon CEDEX, France)

  • Christophe Salon

    (Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon CEDEX, France)

  • Anne Maillard

    (Centre Mondial d’Innovation, CMI, Groupe Roullier, 18 Avenue Franklin Roosevelt, 35400 Saint-Malo, France)

  • Alain Ourry

    (Université de Caen Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, CS 14032, 14032 Caen CEDEX 5, France
    INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, CS 14032, 14032 Caen CEDEX 5, France
    PLATIN’, Plateau d’Isotopie de Normandie, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032 Caen CEDEX 5, France)

Abstract

Human mineral malnutrition or hidden hunger is considered a global challenge, affecting a large proportion of the world’s population. The reduction in the mineral content of edible plant products is frequently found in cultivars bred for higher yields, and is probably increased by intensive agricultural practices. The filling of grain with macro and micronutrients is partly the result of a direct allocation from root uptake and remobilization from vegetative tissues. The aim of this bibliographic review is to focus on recent knowledge obtained from ionomic analysis of plant tissues in order to build a global appraisal of the potential remobilization of all macro and micronutrients, and especially those from leaves. Nitrogen is always remobilized from leaves of all plant species, although with different efficiencies, while nutrients such as K, S, P, Mg, Cu, Mo, Fe and Zn can be mobilized to a certain extent when plants are facing deficiencies. On the opposite, there is few evidence for leaf mobilization of Ca, Mn, Ni and B. Mechanisms related to the remobilization process (remobilization of mineral forms from vacuolar and organic compounds associated with senescence, respectively) are also discussed in the context of drought, an abiotic stress that is thought to increase and known to modulate the ionic composition of grain in crops.

Suggested Citation

  • Philippe Etienne & Sylvain Diquelou & Marion Prudent & Christophe Salon & Anne Maillard & Alain Ourry, 2018. "Macro and Micronutrient Storage in Plants and Their Remobilization When Facing Scarcity: The Case of Drought," Agriculture, MDPI, vol. 8(1), pages 1-17, January.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:1:p:14-:d:127176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oktem, A., 2008. "Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems," Agricultural Water Management, Elsevier, vol. 95(9), pages 1003-1010, September.
    2. Lyudmila Simova-Stoilova & Valya Vassileva & Urs Feller, 2016. "Selection and Breeding of Suitable Crop Genotypes for Drought and Heat Periods in a Changing Climate: Which Morphological and Physiological Properties Should Be Considered?," Agriculture, MDPI, vol. 6(2), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urs Feller & Stanislav Kopriva & Valya Vassileva, 2018. "Plant Nutrient Dynamics in Stressful Environments: Needs Interfere with Burdens," Agriculture, MDPI, vol. 8(7), pages 1-6, July.
    2. Maria M. Whitton & Xipeng Ren & Sung J. Yu & Andrew D. Irving & Tieneke Trotter & Yadav S. Bajagai & Dragana Stanley, 2022. "Sea Minerals Reduce Dysbiosis, Improve Pasture Productivity and Plant Morphometrics in Pasture Dieback Affected Soils," Sustainability, MDPI, vol. 14(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    2. Yangjie Ren & Yitong Zhang & Shiyang Guo & Ben Wang & Siqi Wang & Wei Gao, 2023. "Pipe Cavitation Parameters Reveal Bubble Embolism Dynamics in Maize Xylem Vessels across Water Potential Gradients," Agriculture, MDPI, vol. 13(10), pages 1-17, September.
    3. Garcia y Garcia, Axel & Guerra, Larry C. & Hoogenboom, Gerrit, 2009. "Water use and water use efficiency of sweet corn under different weather conditions and soil moisture regimes," Agricultural Water Management, Elsevier, vol. 96(10), pages 1369-1376, October.
    4. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    5. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    6. Lucia Ottaiano & Ida Di Mola & Chiara Cirillo & Eugenio Cozzolino & Mauro Mori, 2021. "Yield Performance and Physiological Response of a Maize Early Hybrid Grown in Tunnel and Open Air under Different Water Regimes," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    7. El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
    8. Mohamadzade, Fahime & Gheysari, Mahdi & Eshghizadeh, Hamidreza & Tabatabaei, Mahsa Sadat & Hoogenboom, Gerrit, 2022. "The effect of water and nitrogen on drip tape irrigated silage maize grown under arid conditions: Experimental and simulations," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Faloye, O.T. & Alatise, M.O. & Ajayi, A.E. & Ewulo, B.S., 2019. "Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation," Agricultural Water Management, Elsevier, vol. 217(C), pages 165-178.
    10. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    11. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    12. Teshome, Fitsum T. & Bayabil, Haimanote K. & Schaffer, Bruce & Ampatzidis, Yiannis & Hoogenboom, Gerrit & Singh, Aditya, 2023. "Exploring deficit irrigation as a water conservation strategy: Insights from field experiments and model simulation," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Zhou, Hongxu & Li, Yunkai & Wang, Yan & Zhou, Bo & Bhattarai, Rabin, 2019. "Composite fouling of drip emitters applying surface water with high sand concentration: Dynamic variation and formation mechanism," Agricultural Water Management, Elsevier, vol. 215(C), pages 25-43.
    14. Urs Feller & Stanislav Kopriva & Valya Vassileva, 2018. "Plant Nutrient Dynamics in Stressful Environments: Needs Interfere with Burdens," Agriculture, MDPI, vol. 8(7), pages 1-6, July.
    15. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    16. Junfang Zhao & Dongsheng Liu & Ruixi Huang, 2023. "A Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    17. Wang, Maojian & Shi, Wei & Kamran, Muhammad & Chang, Shenghua & Jia, Qianmin & Hou, Fujiang, 2024. "Effects of intercropping and regulated deficit irrigation on the yield, water and land resource utilization, and economic benefits of forage maize in arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:1:p:14-:d:127176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.