IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1937-d1510546.html
   My bibliography  Save this article

Analysis of Physicochemical Properties, Enzyme Activity, Microbial Diversity in Rhizosphere Soil of Coconut ( Cocos nucifera L.) Under Organic and Chemical Fertilizers, Irrigation Conditions

Author

Listed:
  • Lilan Lu

    (Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
    These authors contributed equally to this work.)

  • Chaoqun Tong

    (Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
    These authors contributed equally to this work.)

  • Yingying Liu

    (Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China)

  • Weibo Yang

    (Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China)

Abstract

The application of chemical fertilizers and organic fertilizers, as well as irrigation, is an important agricultural practice that can increase crop yields and affect soil biogeochemical cycles. This study conducted coconut field experiments to investigate the effects of conventional fertilization (NCF), optimized fertilization (MCF), conventional fertilization + organic fertilizer (NOF), optimized fertilization + organic fertilizer (MOF), conventional fertilization + organic fertilizer + irrigation (NOFW), and optimized fertilization + organic fertilizer + irrigation (MOFW) treatments on soil physicochemical properties, soil enzyme activity, bacterial and fungal community structure and diversity, and compared the controls (CK, non-fertilizer and non-irrigation). The results showed that MOFW significantly increased soil electrical conductivity (EC), organic matter (OM), alkaline nitrogen (AN), available phosphorus (AP), available potassium (AK), available calcium (ACa), and available magnesium (AMg) levels. At the same time, it also significantly enhanced the activities of soil catalase (CE), polyphenol oxidase (POE), sucrase (SE), urease (UE), acid protease (APE), and acid phosphatase (APPE) ( p < 0.05). The PCA analysis of soil microorganisms in the coconut rhizosphere soil showed indicated significant changes in bacteria and fungi community structure under fertilization treatments. The fertilization application leaded to an increase in the relative abundance and diversity of bacteria, but a decrease in fungi. Acidobacteriota , Proteobacteria , and Actinobacterota were the dominant bacterial phyla, and Ascomycota , Basidiomycota , Rozellomycota , and Mortierellomycota were the significant fungal phyla. Compared with CK, MOFW significantly increased the abundance of Acidobacteriota , Proteobacteria , Basidiomycota , and Mortierellomycota . Redundancy analysis (CCA) and Mantel test further revealed that pH, EC, OM, and AP were the main soil fertility factors driving changes in microbial communities. CE, SE, UE, APE, APPE were significantly correlated with microbial communities. Compared with NOFW, MOFW has a lower proportion of N, P, and K fertilizers in its fertilizer composition. The results indicated that MOFW can better improve the nutrient and enzyme status of the soil, which is a promising method for maintaining the balance of soil microorganisms in coconut orchards, and accordingly, reducing chemical fertilizers within a certain range can not only ensure consistency with conventional fertilizers, but also effectively improve soil conditions.

Suggested Citation

  • Lilan Lu & Chaoqun Tong & Yingying Liu & Weibo Yang, 2024. "Analysis of Physicochemical Properties, Enzyme Activity, Microbial Diversity in Rhizosphere Soil of Coconut ( Cocos nucifera L.) Under Organic and Chemical Fertilizers, Irrigation Conditions," Agriculture, MDPI, vol. 14(11), pages 1-27, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1937-:d:1510546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ladislav Holík & Lukáš Hlisnikovský & Roman Honzík & Josef Trögl & Hana Burdová & Jan Popelka, 2019. "Soil Microbial Communities and Enzyme Activities after Long-Term Application of Inorganic and Organic Fertilizers at Different Depths of the Soil Profile," Sustainability, MDPI, vol. 11(12), pages 1-14, June.
    2. Yushi Chen & Xinhong Fu & Yuying Liu, 2022. "Effect of Farmland Scale on Farmers’ Application Behavior with Organic Fertilizer," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    3. Li, Zhou & Li, Zhong & Letuma, Puleng & Zhao, Hong & Zhang, Zhixing & Lin, Weiwei & Chen, Hongfei & Lin, Wenxiong, 2018. "A positive response of rice rhizosphere to alternate moderate wetting and drying irrigation at grain filling stage," Agricultural Water Management, Elsevier, vol. 207(C), pages 26-36.
    4. Derek S. Lundberg & Sarah L. Lebeis & Sur Herrera Paredes & Scott Yourstone & Jase Gehring & Stephanie Malfatti & Julien Tremblay & Anna Engelbrektson & Victor Kunin & Tijana Glavina del Rio & Robert , 2012. "Defining the core Arabidopsis thaliana root microbiome," Nature, Nature, vol. 488(7409), pages 86-90, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cyrine Rezgui & Wassila Riah-Anglet & Marie Benoit & Pierre Yves Bernard & Karine Laval & Isabelle Trinsoutrot-Gattin, 2020. "Impacts of the Winter Pea Crop (Instead of Rapeseed) on Soil Microbial Communities, Nitrogen Balance and Wheat Yield," Agriculture, MDPI, vol. 10(11), pages 1-21, November.
    2. Giuseppe Malgioglio & Giulio Flavio Rizzo & Sebastian Nigro & Vincent Lefebvre du Prey & Joelle Herforth-Rahmé & Vittoria Catara & Ferdinando Branca, 2022. "Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application," Sustainability, MDPI, vol. 14(4), pages 1-28, February.
    3. Tonjock Rosemary Kinge & Soumya Ghosh & Errol D. Cason & Marieka Gryzenhout, 2022. "Characterization of the Endophytic Mycobiome in Cowpea ( Vigna unguiculata ) from a Single Location Using Illumina Sequencing," Agriculture, MDPI, vol. 12(3), pages 1-15, February.
    4. Tao He & Wenya Zhang & Hanwen Zhang & Jinliang Sheng, 2023. "Estimation of Manure Emissions Issued from Different Chinese Livestock Species: Potential of Future Production," Agriculture, MDPI, vol. 13(11), pages 1-17, November.
    5. Danping Hou & Yuan Wei & Kun Liu & Jinsong Tan & Qingyu Bi & Guolan Liu & Xinqiao Yu & Junguo Bi & Lijun Luo, 2023. "The Response of Grain Yield and Quality of Water-Saving and Drought-Resistant Rice to Irrigation Regimes," Agriculture, MDPI, vol. 13(2), pages 1-12, January.
    6. Yuying Liu & Kaiyao Shi & Ziqi Liu & Ling Qiu & Yan Wang & Hao Liu & Xinhong Fu, 2022. "The Effect of Technical Training Provided by Agricultural Cooperatives on Farmers’ Adoption of Organic Fertilizers in China: Based on the Mediation Role of Ability and Perception," IJERPH, MDPI, vol. 19(21), pages 1-20, November.
    7. Sara Marinari & Emanuele Radicetti & Verdiana Petroselli & Mohamed Allam & Roberto Mancinelli, 2022. "Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato ( Solanum tuberosum L.) Crop," Agriculture, MDPI, vol. 12(3), pages 1-12, March.
    8. Zhang, Yajun & Wang, Weilu & Li, Siyu & Zhu, Kuanyu & Hua, Xia & Harrison, Matthew Tom & Liu, Ke & Yang, Jianchang & Liu, Lijun & Chen, Yun, 2023. "Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 281(C).
    9. Jake M. Robinson & Jacob G. Mills & Martin F. Breed, 2018. "Walking Ecosystems in Microbiome-Inspired Green Infrastructure: An Ecological Perspective on Enhancing Personal and Planetary Health," Challenges, MDPI, vol. 9(2), pages 1-15, November.
    10. Yuying Liu & Rubin Chen & Yufan Chen & Tinglei Yu & Xinhong Fu, 2024. "Impact of the degree of agricultural green production technology adoption on income: evidence from Sichuan citrus growers," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    11. Luigi Russi & Gianpiero Marconi & Nicoletta Ferradini & Beatrice Farda & Marika Pellegrini & Loretta Pace, 2022. "Investigating Population Genetic Diversity and Rhizosphere Microbiota of Central Apennines’ Artemisia eriantha," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    12. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    13. Ying Wang & Mei Wang & Zhen’an Yang & Yalin Jiao & Guangming Chu, 2022. "Dominant Fungal Communities Aggregate in the Shallow Rhizosphere Soil of Anabasis aphylla," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    14. Jianli Liao & Jun Ye & Yun Liang & Muhammad Khalid & Danfeng Huang, 2019. "Pakchoi Antioxidant Improvement and Differential Rhizobacterial Community Composition under Organic Fertilization," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    15. Changming Cheng & Qiang Gao & Yuqing Qiu, 2022. "Assessing the Ability of Agricultural Socialized Services to Promote the Protection of Cultivated Land among Farmers," Land, MDPI, vol. 11(8), pages 1-16, August.
    16. Quang, Le Xuan & Nakamura, Kimihito & Hung, Tran & Tinh, Nguyen Van & Matsuda, Soken & Kadota, Kengo & Horino, Haruhiko & Hai, Pham Thanh & Komatsu, Hirotaka & Hasegawa, Kiyoshi & Fukuda, Shinji & Hir, 2019. "Effect of organizational paddy water management by a water user group on methane and nitrous oxide emissions and rice yield in the Red River Delta, Vietnam," Agricultural Water Management, Elsevier, vol. 217(C), pages 179-192.
    17. Wang Ge & Shiyun Zhang & Yan Lu & Jiyu Jiang & Hui Jiang & Xiaona Cheng, 2022. "Can Higher Land Rentals Promote Soil Conservation of Large-Scale Farmers in China?," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    18. Meng Qu & Kai Zhao & Renhui Zhang & Yuan Gao & Jing Wang, 2022. "Divergence between Willingness and Behavior of Farmers to Purchase Socialized Agricultural Services: From a Heterogeneity Perspective of Land Scale," Land, MDPI, vol. 11(8), pages 1-21, July.
    19. Eduard Alexandru Dumitru & Cristina Maria Sterie & Steliana Rodino & Marian Butu, 2023. "Consumer Preferences in the Purchase of Agri-Food Products: Implications for the Development of Family Farms," Agriculture, MDPI, vol. 13(8), pages 1-22, July.
    20. Qianhui Ma & Shaofeng Zheng & Peng Deng, 2022. "Impact of Internet Use on Farmers’ Organic Fertilizer Application Behavior under the Climate Change Context: The Role of Social Network," Land, MDPI, vol. 11(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1937-:d:1510546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.