IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15423-d978416.html
   My bibliography  Save this article

Dominant Fungal Communities Aggregate in the Shallow Rhizosphere Soil of Anabasis aphylla

Author

Listed:
  • Ying Wang

    (Department of Forestry, Agricultural College, Shihezi University, Road of North 4th, Shihezi 832003, China
    Department of Grass, Grassy College, Xinjiang Agricultural University, Road of No. 42 Nanchang, Shayibak District, Urumqi 830091, China)

  • Mei Wang

    (Department of Forestry, Agricultural College, Shihezi University, Road of North 4th, Shihezi 832003, China)

  • Zhen’an Yang

    (Department of Tourism and Geography, Science College, Shihezi University, Road of North 4th, Shihezi 832003, China)

  • Yalin Jiao

    (Department of Forestry, Agricultural College, Shihezi University, Road of North 4th, Shihezi 832003, China
    Department of Grass, Grassy College, Xinjiang Agricultural University, Road of No. 42 Nanchang, Shayibak District, Urumqi 830091, China)

  • Guangming Chu

    (Department of Forestry, Agricultural College, Shihezi University, Road of North 4th, Shihezi 832003, China)

Abstract

Rhizosphere soil microorganisms are significant factors affecting plant growth, especially that of saline–alkali tolerant plants in the desert ecosystem. We performed high-throughput sequencing in order to identifying the fungal community structures and their relationships to the physicochemical properties of different soil layers for the desert plant, Anabasis aphylla , in its natural environment. The number of unique operational taxonomic units (OTUs) found in the bulk soil of the 0–20 cm layer contributed to the biggest percentage (24.13%) of the overall amount of unique OTUs. Despite the fact that there was a rather large variety of fungi in the bulk soil of A. aphylla , the number of dominating fungi, which included Ascomycota, Microascus , and Arachnomyces , was found to be in quite high abundance in the rhizosphere soil. In the 20–40 cm layer of rhizosphere soil, the phylum Ascomycota accounted for 84.78% of the total phyla identified, whereas the species Microascus and Arachnomyces accounted for 24.72% and 37.18%, respectively, of the total species identified. In terms of the soil physicochemical properties, electric conductivity was the primary environmental component influencing the dominant fungi. The findings of this research enhance our comprehension of dominant fungi distributions and relevant environmental factors affecting the saline–alkali tolerant desert plant, A. aphylla . The results also provide a theoretical basis to help elucidate fungi adaptation mechanisms to the saline–alkali environment and methods for their isolation and screening.

Suggested Citation

  • Ying Wang & Mei Wang & Zhen’an Yang & Yalin Jiao & Guangming Chu, 2022. "Dominant Fungal Communities Aggregate in the Shallow Rhizosphere Soil of Anabasis aphylla," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15423-:d:978416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Derek S. Lundberg & Sarah L. Lebeis & Sur Herrera Paredes & Scott Yourstone & Jase Gehring & Stephanie Malfatti & Julien Tremblay & Anna Engelbrektson & Victor Kunin & Tijana Glavina del Rio & Robert , 2012. "Defining the core Arabidopsis thaliana root microbiome," Nature, Nature, vol. 488(7409), pages 86-90, August.
    2. Huanhuan Zhang & Jinshan Xi & Qi Lv & Junwu Wang & Kun Yu & Fengyun Zhao, 2022. "Effect of Aerated Irrigation on the Growth and Rhizosphere Soil Fungal Community Structure of Greenhouse Grape Seedlings," Sustainability, MDPI, vol. 14(19), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Malgioglio & Giulio Flavio Rizzo & Sebastian Nigro & Vincent Lefebvre du Prey & Joelle Herforth-Rahmé & Vittoria Catara & Ferdinando Branca, 2022. "Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application," Sustainability, MDPI, vol. 14(4), pages 1-28, February.
    2. Tonjock Rosemary Kinge & Soumya Ghosh & Errol D. Cason & Marieka Gryzenhout, 2022. "Characterization of the Endophytic Mycobiome in Cowpea ( Vigna unguiculata ) from a Single Location Using Illumina Sequencing," Agriculture, MDPI, vol. 12(3), pages 1-15, February.
    3. Jake M. Robinson & Jacob G. Mills & Martin F. Breed, 2018. "Walking Ecosystems in Microbiome-Inspired Green Infrastructure: An Ecological Perspective on Enhancing Personal and Planetary Health," Challenges, MDPI, vol. 9(2), pages 1-15, November.
    4. Luigi Russi & Gianpiero Marconi & Nicoletta Ferradini & Beatrice Farda & Marika Pellegrini & Loretta Pace, 2022. "Investigating Population Genetic Diversity and Rhizosphere Microbiota of Central Apennines’ Artemisia eriantha," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    5. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    6. Jianli Liao & Jun Ye & Yun Liang & Muhammad Khalid & Danfeng Huang, 2019. "Pakchoi Antioxidant Improvement and Differential Rhizobacterial Community Composition under Organic Fertilization," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    7. Carla L. Abán & Giovanni Larama & Antonella Ducci & Jorgelina Huidobro & Michel Abanto & Silvina Vargas-Gil & Carolina Pérez-Brandan, 2022. "Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    8. Nicholas Ozede Igiehon & Olubukola Oluranti Babalola, 2018. "Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture," IJERPH, MDPI, vol. 15(4), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15423-:d:978416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.