IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v207y2018icp26-36.html
   My bibliography  Save this article

A positive response of rice rhizosphere to alternate moderate wetting and drying irrigation at grain filling stage

Author

Listed:
  • Li, Zhou
  • Li, Zhong
  • Letuma, Puleng
  • Zhao, Hong
  • Zhang, Zhixing
  • Lin, Weiwei
  • Chen, Hongfei
  • Lin, Wenxiong

Abstract

Paddy fields are drained and irrigated several times during the whole rice growth period. Although studies have acknowledged the sensitivity of flooding and drainage in rice rhizosphere, current knowledge regarding how moderate drying at grain filling stage affects ecological characteristics of rice rhizosphere is limited. A field experiment with two irrigation regimes [alternate moderate wetting and drying irrigation (AMWD) and continuous irrigation (CI)] was conducted to investigate the changes in soil physical and chemical properties and microbial communities. Results from this investigation demonstrated that soil pH under AMWD was decreased, while Eh was increased. Moreover, soil electrical conductivity increased and decreased with a decline in soil water potential, interestingly all studied variables quickly recovered after re-watering.

Suggested Citation

  • Li, Zhou & Li, Zhong & Letuma, Puleng & Zhao, Hong & Zhang, Zhixing & Lin, Weiwei & Chen, Hongfei & Lin, Wenxiong, 2018. "A positive response of rice rhizosphere to alternate moderate wetting and drying irrigation at grain filling stage," Agricultural Water Management, Elsevier, vol. 207(C), pages 26-36.
  • Handle: RePEc:eee:agiwat:v:207:y:2018:i:c:p:26-36
    DOI: 10.1016/j.agwat.2018.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418306838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    2. Yang, Changming & Yang, Linzhang & Yang, Yongxing & Ouyang, Zhu, 2004. "Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils," Agricultural Water Management, Elsevier, vol. 70(1), pages 67-81, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danping Hou & Yuan Wei & Kun Liu & Jinsong Tan & Qingyu Bi & Guolan Liu & Xinqiao Yu & Junguo Bi & Lijun Luo, 2023. "The Response of Grain Yield and Quality of Water-Saving and Drought-Resistant Rice to Irrigation Regimes," Agriculture, MDPI, vol. 13(2), pages 1-12, January.
    2. Quang, Le Xuan & Nakamura, Kimihito & Hung, Tran & Tinh, Nguyen Van & Matsuda, Soken & Kadota, Kengo & Horino, Haruhiko & Hai, Pham Thanh & Komatsu, Hirotaka & Hasegawa, Kiyoshi & Fukuda, Shinji & Hir, 2019. "Effect of organizational paddy water management by a water user group on methane and nitrous oxide emissions and rice yield in the Red River Delta, Vietnam," Agricultural Water Management, Elsevier, vol. 217(C), pages 179-192.
    3. Zhang, Yajun & Wang, Weilu & Li, Siyu & Zhu, Kuanyu & Hua, Xia & Harrison, Matthew Tom & Liu, Ke & Yang, Jianchang & Liu, Lijun & Chen, Yun, 2023. "Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 281(C).
    4. Nisha subedi & Samir poudel, 2021. "Alternate Wetting And Drying Technique And Its Impacts On Rice Production," Tropical Agrobiodiversity (TRAB), Zibeline International Publishing, vol. 2(1), pages 1-6, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    3. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    4. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    5. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    6. A. Das & R.P. Sharma & N. Chattopadhyaya & R. Rakshit, 2014. "Yield trends and nutrient budgeting under a long-term (28 years) nutrient management in rice-wheat cropping system under subtropical climatic condition," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(8), pages 351-357.
    7. M. Shaaban & M. Abid & R.A.I. Abou-Shanab, 2013. "Amelioration of salt affected soils in rice paddy system by application of organic and inorganic amendments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(5), pages 227-233.
    8. Inmaculada Bautista & Joana Oliver & Antonio Lidón & Jose María Osca & Neus Sanjuán, 2023. "Improving the Chemical Properties of Acid Sulphate Soils from the Casamance River Basin," Land, MDPI, vol. 12(9), pages 1-20, August.
    9. Shao, Guangcheng & Cui, Jintao & Yu, Shuang’en & Lu, Bin & Brian, Boman J. & Ding, Jihui & She, Dongli, 2015. "Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice," Agricultural Water Management, Elsevier, vol. 149(C), pages 156-165.
    10. Tsujimoto, Yasuhiro & Horie, Takeshi & Randriamihary, Hamon & Shiraiwa, Tatsuhiko & Homma, Koki, 2009. "Soil management: The key factors for higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of Madagascar," Agricultural Systems, Elsevier, vol. 100(1-3), pages 61-71, April.
    11. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    12. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    13. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    14. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    15. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    16. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    17. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    18. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J., 2015. "Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China," Agricultural Water Management, Elsevier, vol. 162(C), pages 15-32.
    19. Zhang, Yajun & Wang, Weilu & Li, Siyu & Zhu, Kuanyu & Hua, Xia & Harrison, Matthew Tom & Liu, Ke & Yang, Jianchang & Liu, Lijun & Chen, Yun, 2023. "Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 281(C).
    20. Aliasghar Montazar & E. Zadbagher, 2010. "An Analytical Hierarchy Model for Assessing Global Water Productivity of Irrigation Networks in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2817-2832, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:207:y:2018:i:c:p:26-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.