IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i11p2143-d1279387.html
   My bibliography  Save this article

Estimation of Manure Emissions Issued from Different Chinese Livestock Species: Potential of Future Production

Author

Listed:
  • Tao He

    (College of Animal Science & Technology, Shihezi University, Shihezi 832000, China)

  • Wenya Zhang

    (College of Animal Science & Technology, Shihezi University, Shihezi 832000, China)

  • Hanwen Zhang

    (College of Animal Science & Technology, Shihezi University, Shihezi 832000, China)

  • Jinliang Sheng

    (College of Animal Science & Technology, Shihezi University, Shihezi 832000, China)

Abstract

In this study, mathematical models are used to estimate the emissions of livestock excreta (LE) generated by China’s livestock industry more accurately. Also, the spatial relationship between provinces is analyzed. LE emissions are predicted for the next decade through appropriate parameters and non-parametric models. Additionally, a literature review is conducted to propose two hypotheses. As revealed by the research, there are four stages that LE emissions experience over time. From 2017 to 2021, LE emissions showed a trend of steady increase, suggesting a stronger awareness of the issue and the enforcement of more measures related to management and emission reduction. According to the results of a spatial analysis, there was no significant positive or negative correlation present between LE emissions in different provinces of China. In the selection of the prediction model, the BP-RE model achieved the best predictive performance. According to the prediction results, the fresh weight emissions from China’s livestock industry will increase by 24.53% by 2031, while dry weight emissions will decrease by 28.06%. Large-scale aquaculture farms show an upward trend, with fresh weight and dry weight emissions rising by 11.16% and 2.05%, respectively. Therefore, in light of this study’s findings, it is crucial for China to pursue additional measures in reducing LE emissions, despite the implementation of existing management policies. These insights can inform the development of livestock and poultry manure management policies and resource utilization strategies for the coming decade.

Suggested Citation

  • Tao He & Wenya Zhang & Hanwen Zhang & Jinliang Sheng, 2023. "Estimation of Manure Emissions Issued from Different Chinese Livestock Species: Potential of Future Production," Agriculture, MDPI, vol. 13(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2143-:d:1279387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/11/2143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/11/2143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Zhiming & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Bai, Qingjun & Liang, Hao & Wang, Lu & Zhao, Jing & Fang, Wei, 2021. "Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Yushi Chen & Xinhong Fu & Yuying Liu, 2022. "Effect of Farmland Scale on Farmers’ Application Behavior with Organic Fertilizer," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    3. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yang & Zhang, Xuan & Hao, Zengchao & Hao, Fanghua & Li, Chong, 2021. "Projections of future meteorological droughts in China under CMIP6 from a three‐dimensional perspective," Agricultural Water Management, Elsevier, vol. 252(C).
    2. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Wei Wei & Jiping Wang & Libang Ma & Xufeng Wang & Binbin Xie & Junju Zhou & Haoyan Zhang, 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(1), pages 1-19, January.
    6. Lilan Lu & Chaoqun Tong & Yingying Liu & Weibo Yang, 2024. "Analysis of Physicochemical Properties, Enzyme Activity, Microbial Diversity in Rhizosphere Soil of Coconut ( Cocos nucifera L.) Under Organic and Chemical Fertilizers, Irrigation Conditions," Agriculture, MDPI, vol. 14(11), pages 1-27, October.
    7. Benoit Govoeyi & Jean-Baptiste De La Salle Tignégré & Felix Badolo & Paul Alhassan Zaato & Karamoko Sanogo & Birhanu Zemadim Birhanu, 2022. "Perceptions on Sack Gardening in Rural Areas: The Case of Vegetable Stakeholders in Koutiala and Bougouni, Mali," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    8. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    9. Cui, Yi & Zhou, Yuliang & Jin, Juliang & Jiang, Shangming & Wu, Chengguo & Ning, Shaowei, 2023. "Spatiotemporal characteristics and obstacle factors identification of agricultural drought disaster risk: A case study across Anhui Province, China," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Bambo Bayo & Shakeel Mahmood, 2023. "Geo-spatial analysis of drought in The Gambia using multiple models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2751-2770, July.
    11. Israel R. Orimoloye & Adeyemi O. Olusola & Johanes A. Belle & Chaitanya B. Pande & Olusola O. Ololade, 2022. "Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1085-1106, June.
    12. Yuying Liu & Rubin Chen & Yufan Chen & Tinglei Yu & Xinhong Fu, 2024. "Impact of the degree of agricultural green production technology adoption on income: evidence from Sichuan citrus growers," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    13. Li, Yifei & Huang, Shengzhi & Wang, Hanye & Zheng, Xudong & Huang, Qiang & Deng, Mingjiang & Peng, Jian, 2022. "High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Juan Zhang & Yuan Qi & Qian Li & Jinlong Zhang & Rui Yang & Hongwei Wang & Xiangfeng Li, 2025. "Combining UAV-Based Multispectral and Thermal Images to Diagnosing Dryness Under Different Crop Areas on the Loess Plateau," Agriculture, MDPI, vol. 15(2), pages 1-19, January.
    15. Xiao, Xin & Ming, Wenting & Luo, Xuan & Yang, Luyi & Li, Meng & Yang, Pengwu & Ji, Xuan & Li, Yungang, 2024. "Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model," Agricultural Water Management, Elsevier, vol. 293(C).
    16. Abiodun A. Ogundeji & Collins C. Okolie, 2022. "Perception and Adaptation Strategies of Smallholder Farmers to Drought Risk: A Scientometric Analysis," Agriculture, MDPI, vol. 12(8), pages 1-18, July.
    17. Meng Qu & Kai Zhao & Renhui Zhang & Yuan Gao & Jing Wang, 2022. "Divergence between Willingness and Behavior of Farmers to Purchase Socialized Agricultural Services: From a Heterogeneity Perspective of Land Scale," Land, MDPI, vol. 11(8), pages 1-21, July.
    18. Huang, Wenhuan & Wang, Hailong, 2021. "Drought and intensified agriculture enhanced vegetation growth in the central Pearl River Basin of China," Agricultural Water Management, Elsevier, vol. 256(C).
    19. Hua Yang & Jun He & Zhinong Li & Yufang Su & Jianchu Xu, 2024. "Ethnic diversity and divergent perceptions of climate change: a case study in Southwest China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    20. Zhang, Q. & Li, Y.P. & Huang, G.H. & Wang, H. & Li, Y.F. & Shen, Z.Y., 2024. "Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming," Agricultural Water Management, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2143-:d:1279387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.