IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8500-d972328.html
   My bibliography  Save this article

Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept

Author

Listed:
  • Volodymyr Bulgakov

    (Department of Mechanics, Faculty of Construction and Design, National University of Life and Environmental Sciences of Ukraine, 15, Heroyiv Oborony Str., UA 03041 Kyiv, Ukraine)

  • Volodymyr Nadykto

    (Department of Machine-Using in Agriculture, Dmytro Motornyi Tavria State Agrotechnological University, 18 B , Khmelnytsky Ave., UA 72310 Melitopol, Zaporozhye Region, Ukraine)

  • Olga Orynycz

    (Department of Production Management, Faculty of Engineering Management, Bialystok University of Technology, Wiejska Str. 45A, 15-351 Bialystok, Poland)

  • Simone Pascuzzi

    (Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

Abstract

One of the best precursors for winter wheat is fallow. Its application aims to solve two important tasks: preserving and accumulating soil moisture and weed control. The authors of this paper have designed a new modular harrow for fallow tillage, which can work stably at a depth of 5–6 cm tillage while maintaining and even accumulating soil moisture. This article describes a method designed by the authors for a reasonable selection of the design parameters concerning the working devices mounted inside the new harrow, such as their length and working width, as well as the angles of vertical inclination ( ε ) and horizontal deviation ( γ ) of blades, depending on the accepted depth of the upper soil layer loosening. To reduce the soil tillage resistance of the harrowing unit resulting in a reduction in the tractor fuel consumption, the value of the inclination angle ( ε ) of its vertical blade should be chosen so that the corresponding change in the value of the deflection angle of the horizontal blade ( γ ) complies with the constrain of the product of tangents of these angles. Moreover, preference should be given to choosing the value of the angle ε with the subsequent determination of the angle γ value. It is demonstrated that proper use of the new type of harrow assures fuel savings and decreases carbon dioxide emissions even if fossil fuel alone is used. Additional reduction of CO 2 emission can be achieved when biofuels are used as a replacement for fossil ones.

Suggested Citation

  • Volodymyr Bulgakov & Volodymyr Nadykto & Olga Orynycz & Simone Pascuzzi, 2022. "Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept," Energies, MDPI, vol. 15(22), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8500-:d:972328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anastasia Angelaki & Alkiviadis Dionysidis & Parveen Sihag & Evangelia E. Golia, 2022. "Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil," Land, MDPI, vol. 11(2), pages 1-19, February.
    2. Arrigo Salvatore Guerrieri & Alexandros Sotirios Anifantis & Francesco Santoro & Simone Pascuzzi, 2019. "Study of a Large Square Baler with Innovative Technological Systems that Optimize the Baling Effectiveness," Agriculture, MDPI, vol. 9(5), pages 1-8, April.
    3. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    4. Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    2. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    3. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    4. Artur Przywara & Francesco Santoro & Artur Kraszkiewicz & Anna Pecyna & Simone Pascuzzi, 2020. "Experimental Study of Disc Fertilizer Spreader Performance," Agriculture, MDPI, vol. 10(10), pages 1-11, October.
    5. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    6. Anna Stankiewicz, 2019. "Optimal and Robustly Optimal Consumption of Stretch Film Used for Wrapping Cylindrical Baled Silage," Agriculture, MDPI, vol. 9(12), pages 1-27, November.
    7. Bin Hu & Linmei Liu & Ruihui Chen & Yi Li & Panwen Li & Haiyang Chen & Gang Liu & Yanguo Teng, 2022. "The Impact of Clogging Issues at a Riverbank Filtration Site in the Lalin River, NE, China: A Laboratory Column Study," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    8. Xufeng Li & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Ruixia Chen & Jianglong An, 2023. "Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    9. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Zinoviy Ruzhylo & Ivan Fedosiy & Francesco Santoro, 2020. "A New Spiral Potato Cleaner to Enhance the Removal of Impurities and Soil Clods in Potato Harvesting," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    10. Carlito Balingbing & Nguyen Van Hung & Ampy Paulo Roxas & Daniel Aquino & Mary Grace Barbacias & Martin Gummert, 2020. "An Assessment on the Technical and Economic Feasibility of Mechanized Rice Straw Collection in the Philippines," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    11. Tarek Selim & Samah M. Elkefafy & Ronny Berndtsson & Mohamed Elkiki & Ahmed A. El-kharbotly, 2023. "Heavy Metal Transport in Different Drip-Irrigated Soil Types with Potato Crop," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    12. José Ignacio Rojas-Sola & Gloria del Río-Cidoncha & Ángel Coronil-García, 2020. "Industrial Archaeology Applied to the Study of an Ancient Harvesting Machine: Three-Dimensional Modelling and Virtual Reconstruction," Agriculture, MDPI, vol. 10(8), pages 1-23, August.
    13. Antonio Pantaleo & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Francesco Santoro & Sara Rajabi Hamedani, 2020. "Techno-Economic Modeling of Biomass Pellet Routes: Feasibility in Italy," Energies, MDPI, vol. 13(7), pages 1-15, April.
    14. Volodymyr Bulgakov & Simone Pascuzzi & Valerii Adamchuk & Jaroslav Gadzalo & Volodymyr Nadykto & Jüri Olt & Janusz Nowak & Viktor Kaminskiy, 2022. "Dynamics of Temperature Variation in Soil under Fallow Tillage at Different Depths," Agriculture, MDPI, vol. 12(4), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8500-:d:972328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.