IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v127y2019icp249-264.html
   My bibliography  Save this article

Hub-based truck platooning: Potentials and profitability

Author

Listed:
  • Larsen, Rune
  • Rich, Jeppe
  • Rasmussen, Thomas Kjær

Abstract

This paper presents a model for optimising truck platoons formed at a platooning hub. Different planning and dispatching strategies, from static to dynamic, are investigated with respect to profitability and fuel savings across a range of input variables. The problem is solved using a dynamic programming based local search heuristic. As a case study, a virtual platooning hub close to the German Elb Tunnel is examined using data from a large European transport network model. It is concluded that profitability crucially depends on; (i) dynamic outlook and (ii) if chauffeurs are allowed to rest while driving in platoons.

Suggested Citation

  • Larsen, Rune & Rich, Jeppe & Rasmussen, Thomas Kjær, 2019. "Hub-based truck platooning: Potentials and profitability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 249-264.
  • Handle: RePEc:eee:transe:v:127:y:2019:i:c:p:249-264
    DOI: 10.1016/j.tre.2019.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655451830944X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jensen, Anders Fjendbo & Thorhauge, Mikkel & de Jong, Gerard & Rich, Jeppe & Dekker, Thijs & Johnson, Daniel & Cabral, Manuel Ojeda & Bates, John & Nielsen, Otto Anker, 2019. "A disaggregate freight transport chain choice model for Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 43-62.
    2. Gerard de Jong & Reto Tanner & Jeppe Rich & Mikkel Thorhauge & Otto Anker Nielsen & John Bates, 2017. "Modelling production-consumption flows of goods in Europe: the trade model within Transtools3," Journal of Shipping and Trade, Springer, vol. 2(1), pages 1-23, December.
    3. Nowakowski, Christopher & Shladover, Steven E & Lu, Xiao-Yun & Thompson, Deborah & Kailas, Aravind, 2015. "Cooperative Adaptive Cruise Control (CACC) for Truck Platooning: Operational Concept Alternatives," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7jf9n5wm, Institute of Transportation Studies, UC Berkeley.
    4. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part I – Model formulations under alternative distributions and restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 166-181.
    5. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    6. Goel, Asvin, 2014. "Hours of service regulations in the United States and the 2013 rule change," Transport Policy, Elsevier, vol. 33(C), pages 48-55.
    7. Zhang, Wei & Jenelius, Erik & Ma, Xiaoliang, 2017. "Freight transport platoon coordination and departure time scheduling under travel time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 1-23.
    8. Lu, Xiao-Yun & Shladover, Steven E, 2011. "Automated Truck Platoon Control," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7c55g2qs, Institute of Transportation Studies, UC Berkeley.
    9. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Qiaolin & Gu, Weihua & Wu, Lingxiao & Zhang, Le, 2024. "Optimal autonomous truck platooning with detours, nonlinear costs, and a platoon size constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    2. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2020. "Multiple equilibrium behaviors of auto travellers and a freight carrier under the cordon-based large-truck restriction regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    3. Yan, Xiaoyuan & Xu, Min & Xie, Chi, 2023. "Local container drayage problem with improved truck platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    4. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
    5. Sun, Xiaotong & Yin, Yafeng, 2021. "Decentralized game-theoretical approaches for behaviorally-stable and efficient vehicle platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 45-69.
    6. Noruzoliaee, Mohamadhossein & Zou, Bo & Zhou, Yan (Joann), 2021. "Truck platooning in the U.S. national road network: A system-level modeling approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    7. Kishore Bhoopalam, A. & Agatz, N.A.H. & Zuidwijk, R.A., 2020. "Spatial and Temporal Synchronization of Truck Platoons," ERIM Report Series Research in Management ERS-2020-014-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Daisuke Watanabe & Takeshi Kenmochi & Keiju Sasa, 2021. "An Analytical Approach for Facility Location for Truck Platooning—A Case Study of an Unmanned Following Truck Platooning System in Japan," Logistics, MDPI, vol. 5(2), pages 1-15, May.
    9. Xiong, Xi & Sha, Junyi & Jin, Li, 2021. "Optimizing coordinated vehicle platooning: An analytical approach based on stochastic dynamic programming," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 482-502.
    10. Kalvis Kons & Boško Blagojević & Blas Mola-Yudego & Robert Prinz & Johanna Routa & Biljana Kulisic & Bruno Gagnon & Dan Bergström, 2022. "Industrial End-Users’ Preferred Characteristics for Wood Biomass Feedstocks," Energies, MDPI, vol. 15(10), pages 1-22, May.
    11. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    12. Marzano, Vittorio & Tinessa, Fiore & Fiori, Chiara & Tocchi, Daniela & Papola, Andrea & Aponte, Dario & Cascetta, Ennio & Simonelli, Fulvio, 2022. "Impacts of truck platooning on the multimodal freight transport market: An exploratory assessment on a case study in Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 100-125.
    13. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    14. Boshuai Zhao & Roel Leus, 2022. "An improved decomposition-based heuristic for truck platooning," Papers 2210.05562, arXiv.org, revised Feb 2023.
    15. Li, Qianwen & Li, Xiaopeng, 2022. "Trajectory planning for autonomous modular vehicle docking and autonomous vehicle platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. Xue, Zhaojie & Lin, Hui & You, Jintao, 2021. "Local container drayage problem with truck platooning mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    17. Liatsos, Vasileios & Golias, Mihalis & Hourdos, John & Mishra, Sabyasachee, 2024. "The capacitated hybrid truck platooning network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    18. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    2. Kishore Bhoopalam, A. & Agatz, N.A.H. & Zuidwijk, R.A., 2017. "Planning of Truck Platoons: a Literature Review and Directions for Future Research," ERIM Report Series Research in Management ERS-2017-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Kishore Bhoopalam, A. & van den Berg, R. & Agatz, N.A.H. & Chorus, C.G., 2021. "The long road to automated trucking: Insights from driver focus groups," ERIM Report Series Research in Management ERS-2021-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    5. Vitalii Naumov & Olha Shulika & Oleksandra Orda & Hanna Vasiutina & Marek Bauer & Myroslav Oliskevych, 2022. "Shaping the Optimal Technology for Servicing the Long-Distance Deliveries of Packaged Cargo by Road Transport," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    6. Scholl, Joachim & Boysen, Nils & Scholl, Armin, 2023. "E-platooning: Optimizing platoon formation for long-haul transportation with electric commercial vehicles," European Journal of Operational Research, Elsevier, vol. 304(2), pages 525-542.
    7. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    8. Sun, Xiaotong & Yin, Yafeng, 2021. "Decentralized game-theoretical approaches for behaviorally-stable and efficient vehicle platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 45-69.
    9. Xiong, Xi & Sha, Junyi & Jin, Li, 2021. "Optimizing coordinated vehicle platooning: An analytical approach based on stochastic dynamic programming," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 482-502.
    10. Hu, Qiaolin & Gu, Weihua & Wu, Lingxiao & Zhang, Le, 2024. "Optimal autonomous truck platooning with detours, nonlinear costs, and a platoon size constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    11. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    12. Keya, Nowreen & Anowar, Sabreena & Bhowmik, Tanmoy & Eluru, Naveen, 2021. "A joint framework for modeling freight mode and destination choice: Application to the US commodity flow survey data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    13. Rasulkhani, Saeid & Chow, Joseph Y.J., 2019. "Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 60-81.
    14. Xue, Zhaojie & Lin, Hui & You, Jintao, 2021. "Local container drayage problem with truck platooning mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    15. Liatsos, Vasileios & Golias, Mihalis & Hourdos, John & Mishra, Sabyasachee, 2024. "The capacitated hybrid truck platooning network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    16. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    17. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
    18. Noruzoliaee, Mohamadhossein & Zou, Bo & Zhou, Yan (Joann), 2021. "Truck platooning in the U.S. national road network: A system-level modeling approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    19. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    20. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2018. "Stochastic user equilibrium with a bounded choice model," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 254-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:127:y:2019:i:c:p:249-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.