IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/131893.html
   My bibliography  Save this paper

Spatial and Temporal Synchronization of Truck Platoons

Author

Listed:
  • Kishore Bhoopalam, A.
  • Agatz, N.A.H.
  • Zuidwijk, R.A.

Abstract

Truck platooning technology allows trucks to drive at short headways to save fuel and associated emissions. However, fuel savings from platooning are relatively small so forming platoons should be convenient and with minimum detour and delays. In this paper, we focus on developing optimization technology to match trucks into platoons. We formulate a mathematical program for the platoon routing problem with time windows (PRP-TW) based on a time-space network. We provide polynomial time algorithms to solve special cases of the PRP-TW with 2-truck platoons. Based on these special cases, we build several fast heuristics for the PRP-TW and show that these heuristics perform well. Moreover, we show that simple 2-truck platoons already capture most of the potential savings of platooning.

Suggested Citation

  • Kishore Bhoopalam, A. & Agatz, N.A.H. & Zuidwijk, R.A., 2020. "Spatial and Temporal Synchronization of Truck Platoons," ERIM Report Series Research in Management ERS-2020-014-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:131893
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/131893/ERS-2020-014-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    2. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2017. "The Continuous-Time Service Network Design Problem," Operations Research, INFORMS, vol. 65(5), pages 1303-1321, October.
    3. Stefan Poikonen & Bruce Golden & Edward A. Wasil, 2019. "A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 335-346, April.
    4. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2018. "The identical-path truck platooning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 26-39.
    5. Hani S. Mahmassani, 2016. "50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considerations," Transportation Science, INFORMS, vol. 50(4), pages 1140-1162, November.
    6. George B. Dantzig, 1960. "On the Shortest Route Through a Network," Management Science, INFORMS, vol. 6(2), pages 187-190, January.
    7. Larsen, Rune & Rich, Jeppe & Rasmussen, Thomas Kjær, 2019. "Hub-based truck platooning: Potentials and profitability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 249-264.
    8. Stefan Poikonen & Bruce Golden, 2020. "The Mothership and Drone Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 249-262, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boshuai Zhao & Roel Leus, 2022. "An improved decomposition-based heuristic for truck platooning," Papers 2210.05562, arXiv.org, revised Feb 2023.
    2. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scherr, Yannick Oskar & Hewitt, Mike & Neumann Saavedra, Bruno Albert & Mattfeld, Dirk Christian, 2020. "Dynamic discretization discovery for the service network design problem with mixed autonomous fleets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 164-195.
    2. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
    3. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    4. Noruzoliaee, Mohamadhossein & Zou, Bo & Zhou, Yan (Joann), 2021. "Truck platooning in the U.S. national road network: A system-level modeling approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    5. Anirudh Kishore Bhoopalam & Niels Agatz & Rob Zuidwijk, 2023. "Platoon Optimization Based on Truck Pairs," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1242-1260, November.
    6. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    7. Xiong, Xi & Sha, Junyi & Jin, Li, 2021. "Optimizing coordinated vehicle platooning: An analytical approach based on stochastic dynamic programming," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 482-502.
    8. Hu, Qiaolin & Gu, Weihua & Wu, Lingxiao & Zhang, Le, 2024. "Optimal autonomous truck platooning with detours, nonlinear costs, and a platoon size constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    9. Scherr, Yannick Oskar & Neumann Saavedra, Bruno Albert & Hewitt, Mike & Mattfeld, Dirk Christian, 2019. "Service network design with mixed autonomous fleets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 40-55.
    10. Xue, Zhaojie & Lin, Hui & You, Jintao, 2021. "Local container drayage problem with truck platooning mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    11. Zhu, Waiming & Hu, Xiaoxuan & Pei, Jun & Pardalos, Panos M., 2024. "Minimizing the total travel distance for the locker-based drone delivery: A branch-and-cut-based method," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    12. Liatsos, Vasileios & Golias, Mihalis & Hourdos, John & Mishra, Sabyasachee, 2024. "The capacitated hybrid truck platooning network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    13. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    14. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    15. Huailei Cheng & Yuhong Wang & Dan Chong & Chao Xia & Lijun Sun & Jenny Liu & Kun Gao & Ruikang Yang & Tian Jin, 2023. "Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Ramirez Ibarra, Monica & Saphores, Jean-Daniel M., 2023. "1,000 HP electric drayage trucks as a substitute for new freeway lanes construction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    17. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    18. Duret, Aurelien & Wang, Meng & Ladino, Andres, 2020. "A hierarchical approach for splitting truck platoons near network discontinuities," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 285-302.
    19. You, Jintao & Wang, Yuan & Xue, Zhaojie, 2023. "An exact algorithm for the multi-trip container drayage problem with truck platooning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    20. Abdolmaleki, Mojtaba & Shahabi, Mehrdad & Yin, Yafeng & Masoud, Neda, 2021. "Itinerary planning for cooperative truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 91-110.

    More about this item

    Keywords

    truck platoons; time-space network; fuel savings; optimization;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:131893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.