IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v150y2021icp482-502.html
   My bibliography  Save this article

Optimizing coordinated vehicle platooning: An analytical approach based on stochastic dynamic programming

Author

Listed:
  • Xiong, Xi
  • Sha, Junyi
  • Jin, Li

Abstract

Platooning connected and autonomous vehicles (CAVs) can improve traffic and fuel efficiency. However, scalable platooning operations require junction-level coordination, which has not been well studied. In this paper, we study the coordination of vehicle platooning at highway junctions. We consider a setting where CAVs randomly arrive at a highway junction according to a general renewal process. When a CAV approaches the junction, a system operator determines whether the CAV will merge into the platoon ahead according to the positions and speeds of the CAV and the platoon. We formulate a Markov decision process to minimize the discounted cumulative travel cost, i.e., fuel consumption plus travel delay, over an infinite time horizon. We show that the optimal policy is threshold-based: the CAV will merge with the platoon if and only if the difference between the CAV’s and the platoon’s predicted times of arrival at the junction is less than a constant threshold. We also propose two ready-to-implement algorithms to derive the optimal policy. Comparison with the classical value iteration algorithm implies that our approach explicitly incorporating the characteristics of the optimal policy is significantly more efficient in terms of computation. Importantly, we show that the optimal policy under Poisson arrivals can be obtained by solving a system of integral equations. We also validate our results in simulation with a Real-time Strategy (RTS) using real traffic data. The simulation results indicate that the proposed method yields better performance compared with the conventional method.

Suggested Citation

  • Xiong, Xi & Sha, Junyi & Jin, Li, 2021. "Optimizing coordinated vehicle platooning: An analytical approach based on stochastic dynamic programming," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 482-502.
  • Handle: RePEc:eee:transb:v:150:y:2021:i:c:p:482-502
    DOI: 10.1016/j.trb.2021.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152100120X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vinayak Deshpande & Morris A. Cohen & Karen Donohue, 2003. "A Threshold Inventory Rationing Policy for Service-Differentiated Demand Classes," Management Science, INFORMS, vol. 49(6), pages 683-703, June.
    2. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    3. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2018. "The identical-path truck platooning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 26-39.
    4. Zhang, Wei & Jenelius, Erik & Ma, Xiaoliang, 2017. "Freight transport platoon coordination and departure time scheduling under travel time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 1-23.
    5. Larsen, Rune & Rich, Jeppe & Rasmussen, Thomas Kjær, 2019. "Hub-based truck platooning: Potentials and profitability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 249-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renjie Li & Yanyan Qin, 2024. "Car-Following Strategy Involving Stabilizing Traffic Flow with Connected Automated Vehicles to Reduce Particulate Matter (PM) Emissions in Rainy Weather," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
    2. Sun, Xiaotong & Yin, Yafeng, 2021. "Decentralized game-theoretical approaches for behaviorally-stable and efficient vehicle platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 45-69.
    3. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    4. Haochen Xu & Niaona Zhang & Zonghao Li & Zichang Zhuo & Ye Zhang & Yilei Zhang & Haitao Ding, 2023. "Energy-Saving Speed Planning for Electric Vehicles Based on RHRL in Car following Scenarios," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    5. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    2. Hu, Qiaolin & Gu, Weihua & Wu, Lingxiao & Zhang, Le, 2024. "Optimal autonomous truck platooning with detours, nonlinear costs, and a platoon size constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    3. Xue, Zhaojie & Lin, Hui & You, Jintao, 2021. "Local container drayage problem with truck platooning mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    4. Liatsos, Vasileios & Golias, Mihalis & Hourdos, John & Mishra, Sabyasachee, 2024. "The capacitated hybrid truck platooning network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    5. Noruzoliaee, Mohamadhossein & Zou, Bo & Zhou, Yan (Joann), 2021. "Truck platooning in the U.S. national road network: A system-level modeling approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. Vitalii Naumov & Olha Shulika & Oleksandra Orda & Hanna Vasiutina & Marek Bauer & Myroslav Oliskevych, 2022. "Shaping the Optimal Technology for Servicing the Long-Distance Deliveries of Packaged Cargo by Road Transport," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    7. Scholl, Joachim & Boysen, Nils & Scholl, Armin, 2023. "E-platooning: Optimizing platoon formation for long-haul transportation with electric commercial vehicles," European Journal of Operational Research, Elsevier, vol. 304(2), pages 525-542.
    8. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
    9. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    10. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    11. Kishore Bhoopalam, A. & Agatz, N.A.H. & Zuidwijk, R.A., 2020. "Spatial and Temporal Synchronization of Truck Platoons," ERIM Report Series Research in Management ERS-2020-014-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Chen, Shukai & Wang, Hua & Meng, Qiang, 2021. "Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 289-315.
    13. Boshuai Zhao & Roel Leus, 2022. "An improved decomposition-based heuristic for truck platooning," Papers 2210.05562, arXiv.org, revised Feb 2023.
    14. Ramirez Ibarra, Monica & Saphores, Jean-Daniel M., 2023. "1,000 HP electric drayage trucks as a substitute for new freeway lanes construction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    15. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    16. Yan, Xiaoyuan & Xu, Min & Xie, Chi, 2023. "Local container drayage problem with improved truck platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    17. Larsen, Rune & Rich, Jeppe & Rasmussen, Thomas Kjær, 2019. "Hub-based truck platooning: Potentials and profitability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 249-264.
    18. Sun, Xiaotong & Yin, Yafeng, 2021. "Decentralized game-theoretical approaches for behaviorally-stable and efficient vehicle platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 45-69.
    19. Daisuke Watanabe & Takeshi Kenmochi & Keiju Sasa, 2021. "An Analytical Approach for Facility Location for Truck Platooning—A Case Study of an Unmanned Following Truck Platooning System in Japan," Logistics, MDPI, vol. 5(2), pages 1-15, May.
    20. Shailesh Chandra & Timothy Thai, 2022. "Analyzing Freight Truck Platoon Accessibility with Route Deviations," Sustainability, MDPI, vol. 14(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:150:y:2021:i:c:p:482-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.