IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v165y2022icp15-34.html
   My bibliography  Save this article

Coalition formation and cost sharing for truck platooning

Author

Listed:
  • Bouchery, Yann
  • Hezarkhani, Behzad
  • Stauffer, Gautier

Abstract

Truck platooning consists of one or several trucks driving very closely behind the platoon leader with the help of technology. Platooning reduces fuel consumption, carbon emissions and congestion while increasing road safety and the productivity of trucks and drivers. This article focuses on the advance planning of platoons. First, we study platoon formation from a system-wide optimization perspective. We formalize the underlying optimization problem and we propose exact and approximate solution approaches that appear to perform very well in instances of practical size. Second, we posit that truck platooning is much more likely to develop efficiently among multiple operators. This involves a shift in business relations between freight operators through cost sharing. We make use of cooperative game theory to study cost allocations among players. Our analysis shows that a compromise is needed among existence, stability and computational efficiency. However, we propose cost allocation rules for cooperative platooning games that perform very well in practice with regard to their stability. Finally, we propose an illustrative example based on the settings of the Port of Rotterdam and we provide a series of insights.

Suggested Citation

  • Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
  • Handle: RePEc:eee:transb:v:165:y:2022:i:c:p:15-34
    DOI: 10.1016/j.trb.2022.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522001424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Shuaidong & Zhang, Kuilin, 2020. "A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditi," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 144-178.
    2. Heuvel, Wilco van den & Borm, Peter & Hamers, Herbert, 2007. "Economic lot-sizing games," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1117-1130, January.
    3. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    4. Lotte Verdonck & Patrick Beullens & An Caris & Katrien Ramaekers & Gerrit K Janssens, 2016. "Analysis of collaborative savings and cost allocation techniques for the cooperative carrier facility location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(6), pages 853-871, June.
    5. Xiaotie Deng & Toshihide Ibaraki & Hiroshi Nagamochi, 1999. "Algorithmic Aspects of the Core of Combinatorial Optimization Games," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 751-766, August.
    6. Sun, Xiaotong & Yin, Yafeng, 2021. "An auction mechanism for platoon leader determination in single-brand cooperative vehicle platooning," Economics of Transportation, Elsevier, vol. 28(C).
    7. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    8. You, Jintao & Miao, Lixin & Zhang, Canrong & Xue, Zhaojie, 2020. "A generic model for the local container drayage problem using the emerging truck platooning operation mode," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 181-209.
    9. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    10. ANILY, Shoshana & TZUR, Michal & WOLSEY, Laurence A., 2009. "Multi-item lot-sizing with joint set-up costs," LIDAM Reprints CORE 2081, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Lu, Xiao-Yun & Shladover, Steven E, 2011. "Automated Truck Platoon Control," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7c55g2qs, Institute of Transportation Studies, UC Berkeley.
    12. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2018. "The identical-path truck platooning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 26-39.
    13. Okan Örsan Özener & Özlem Ergun, 2008. "Allocating Costs in a Collaborative Transportation Procurement Network," Transportation Science, INFORMS, vol. 42(2), pages 146-165, May.
    14. Lozano, S. & Moreno, P. & Adenso-Díaz, B. & Algaba, E., 2013. "Cooperative game theory approach to allocating benefits of horizontal cooperation," European Journal of Operational Research, Elsevier, vol. 229(2), pages 444-452.
    15. Xin Chen & Jiawei Zhang, 2016. "Duality Approaches to Economic Lot-Sizing Games," Production and Operations Management, Production and Operations Management Society, vol. 25(7), pages 1203-1215, July.
    16. Chen, Shukai & Wang, Hua & Meng, Qiang, 2021. "Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 289-315.
    17. Lap Mui Ann Chan & Ana Muriel & Zuo-Jun Max Shen & David Simchi-Levi & Chung-Piaw Teo, 2002. "Effective Zero-Inventory-Ordering Policies for the Single-Warehouse Multiretailer Problem with Piecewise Linear Cost Structures," Management Science, INFORMS, vol. 48(11), pages 1446-1460, November.
    18. Hezarkhani, Behzad & Slikker, Marco & Van Woensel, Tom, 2019. "Gain-sharing in urban consolidation centers," European Journal of Operational Research, Elsevier, vol. 279(2), pages 380-392.
    19. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    20. Sun, Xiaotong & Yin, Yafeng, 2021. "Decentralized game-theoretical approaches for behaviorally-stable and efficient vehicle platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 45-69.
    21. Zhao, Jingang, 2018. "Three little-known and yet still significant contributions of Lloyd Shapley," Games and Economic Behavior, Elsevier, vol. 108(C), pages 592-599.
    22. Lap Mui Ann Chan & Ana Muriel & Zuo-Jun Shen & David Simchi-Levi, 2002. "On the Effectiveness of Zero-Inventory-Ordering Policies for the Economic Lot-Sizing Model with a Class of Piecewise Linear Cost Structures," Operations Research, INFORMS, vol. 50(6), pages 1058-1067, December.
    23. Defryn, Christof & Sörensen, Kenneth & Cornelissens, Trijntje, 2016. "The selective vehicle routing problem in a collaborative environment," European Journal of Operational Research, Elsevier, vol. 250(2), pages 400-411.
    24. Behzad Hezarkhani & Marco Slikker & Tom Woensel, 2016. "A competitive solution for cooperative truckload delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 51-80, January.
    25. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    26. Duret, Aurelien & Wang, Meng & Ladino, Andres, 2020. "A hierarchical approach for splitting truck platoons near network discontinuities," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 285-302.
    27. Guajardo, Mario & Rönnqvist, Mikael & Flisberg, Patrik & Frisk, Mikael, 2018. "Collaborative transportation with overlapping coalitions," European Journal of Operational Research, Elsevier, vol. 271(1), pages 238-249.
    28. Kishore Bhoopalam, A. & Agatz, N.A.H. & Zuidwijk, R.A., 2020. "Spatial and Temporal Synchronization of Truck Platoons," ERIM Report Series Research in Management ERS-2020-014-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    29. Larsen, Rune & Rich, Jeppe & Rasmussen, Thomas Kjær, 2019. "Hub-based truck platooning: Potentials and profitability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 249-264.
    30. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    31. S. Sivanandham & M. S. Gajanand, 2020. "Platooning for sustainable freight transportation: an adoptable practice in the near future?," Transport Reviews, Taylor & Francis Journals, vol. 40(5), pages 581-606, July.
    32. Stefan Engevall & Maud Göthe-Lundgren & Peter Värbrand, 2004. "The Heterogeneous Vehicle-Routing Game," Transportation Science, INFORMS, vol. 38(1), pages 71-85, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    2. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    2. Hezarkhani, Behzad & Slikker, Marco & Van Woensel, Tom, 2019. "Gain-sharing in urban consolidation centers," European Journal of Operational Research, Elsevier, vol. 279(2), pages 380-392.
    3. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    4. Yan, Xiaoyuan & Xu, Min & Xie, Chi, 2023. "Local container drayage problem with improved truck platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    5. Boshuai Zhao & Roel Leus, 2022. "An improved decomposition-based heuristic for truck platooning," Papers 2210.05562, arXiv.org, revised Feb 2023.
    6. Defryn, Christof & Sörensen, Kenneth & Dullaert, Wout, 2019. "Integrating partner objectives in horizontal logistics optimisation models," Omega, Elsevier, vol. 82(C), pages 1-12.
    7. Hu, Qiaolin & Gu, Weihua & Wu, Lingxiao & Zhang, Le, 2024. "Optimal autonomous truck platooning with detours, nonlinear costs, and a platoon size constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    8. Drechsel, J. & Kimms, A., 2010. "Computing core allocations in cooperative games with an application to cooperative procurement," International Journal of Production Economics, Elsevier, vol. 128(1), pages 310-321, November.
    9. Kellner, Florian & Schneiderbauer, Miriam, 2019. "Further insights into the allocation of greenhouse gas emissions to shipments in road freight transportation: The pollution routing game," European Journal of Operational Research, Elsevier, vol. 278(1), pages 296-313.
    10. Xue, Zhaojie & Lin, Hui & You, Jintao, 2021. "Local container drayage problem with truck platooning mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    11. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    12. Chen, Shukai & Wang, Hua & Meng, Qiang, 2021. "Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 289-315.
    13. Florian Kellner, 2022. "Generating greenhouse gas cutting incentives when allocating carbon dioxide emissions to shipments in road freight transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 833-874, September.
    14. Behzad Hezarkhani & Marco Slikker & Tom Woensel, 2016. "A competitive solution for cooperative truckload delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 51-80, January.
    15. Defryn, Christof & Sörensen, Kenneth, 2018. "Multi-objective optimisation models for the travelling salesman problem with horizontal cooperation," European Journal of Operational Research, Elsevier, vol. 267(3), pages 891-903.
    16. Arroyo, Federico, 2024. "Cost Allocation in Vehicle Routing Problems with Time Windows," Junior Management Science (JUMS), Junior Management Science e. V., vol. 9(1), pages 1241-1268.
    17. Diabat, Ali & Bianchessi, Nicola & Archetti, Claudia, 2024. "On the zero-inventory-ordering policy in the inventory routing problem," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1024-1038.
    18. Luis A. Guardiola & Ana Meca & Justo Puerto, 2022. "The effect of consolidated periods in heterogeneous lot-sizing games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 380-404, July.
    19. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    20. Margaretha Gansterer & Richard F. Hartl & Sarah Wieser, 2021. "Assignment constraints in shared transportation services," Annals of Operations Research, Springer, vol. 305(1), pages 513-539, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:165:y:2022:i:c:p:15-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.