IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v92y2016ipap73-87.html
   My bibliography  Save this article

Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability

Author

Listed:
  • Bifulco, Gennaro N.
  • Cantarella, Giulio E.
  • Simonelli, Fulvio
  • Velonà, Pietro

Abstract

In this paper the stability of traffic equilibrium is analysed by using a framework where advanced traveller information systems (ATIS) are explicitly modelled. The role played by information in traffic networks is discussed, with particular reference to the day-to-day dynamics of the traffic network and to system stability at equilibrium. The perspective adopted is that of transportation planning under recurrent network conditions. The network is considered to be in equilibrium, viewed as a fixed-point state of a day-to-day deterministic process, here modelled as a time-discrete non-linear Markovian dynamic system. In discussing the effects generated by the introduction of ATIS, the paper examines: changes in the fixed point(s) with respect to the absence of ATIS, how the theoretical conditions for fixed-point existence and uniqueness are affected, and the impact on the stability properties and the stability region at equilibrium. Most of the analyses are carried out with explicit theoretical considerations. Moreover, a toy network is also employed to explore numerically the effects of removing some assumptions concerning the accuracy of ATIS.

Suggested Citation

  • Bifulco, Gennaro N. & Cantarella, Giulio E. & Simonelli, Fulvio & Velonà, Pietro, 2016. "Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 73-87.
  • Handle: RePEc:eee:transb:v:92:y:2016:i:pa:p:73-87
    DOI: 10.1016/j.trb.2015.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515002696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Meng, Qiang, 2001. "Modeling user adoption of advanced traveler information systems: dynamic evolution and stationary equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 895-912, December.
    2. Al-Deek, Haitham M. & Khattak, Asad J. & Thananjeyan, Paramsothy, 1998. "A combined traveler behavior and system performance model with advanced traveler information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 479-493, September.
    3. André de Palma & Robin Lindsey & Nathalie Picard, 2012. "Risk Aversion, the Value of Information, and Traffic Equilibrium," Transportation Science, INFORMS, vol. 46(1), pages 1-26, February.
    4. Chorus, Caspar G. & Arentze, Theo A. & Molin, Eric J.E. & Timmermans, Harry J.P. & Van Wee, Bert, 2006. "The value of travel information: Decision strategy-specific conceptualizations and numerical examples," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 504-519, July.
    5. Lindsey, Robin & Daniel, Terry & Gisches, Eyran & Rapoport, Amnon, 2014. "Pre-trip information and route-choice decisions with stochastic travel conditions: Theory," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 187-207.
    6. Erel Avineri & Joseph Prashker, 2006. "The Impact of Travel Time Information on Travelers’ Learning under Uncertainty," Transportation, Springer, vol. 33(4), pages 393-408, July.
    7. Lo, Hong K. & Szeto, W. Y., 2002. "A methodology for sustainable traveler information services," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 113-130, February.
    8. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    9. Rapoport, Amnon & Gisches, Eyran J. & Daniel, Terry & Lindsey, Robin, 2014. "Pre-trip information and route-choice decisions with stochastic travel conditions: Experiment," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 154-172.
    10. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    11. Yang, Hai, 1998. "Multiple equilibrium behaviors and advanced traveler information systems with endogenous market penetration," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 205-218, April.
    12. Lo, Hong K. & Szeto, W. Y., 2004. "Modeling advanced traveler information services: static versus dynamic paradigms," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 495-515, July.
    13. Eran Ben-Elia & Erel Avineri, 2015. "Response to Travel Information: A Behavioural Review," Transport Reviews, Taylor & Francis Journals, vol. 35(3), pages 352-377, May.
    14. Paz, Alexander & Peeta, Srinivas, 2009. "On-line calibration of behavior parameters for behavior-consistent route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 403-421, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaomei Zhao & Chunhua Wan & Jun Bi, 2019. "Day-to-Day Assignment Models and Traffic Dynamics Under Information Provision," Networks and Spatial Economics, Springer, vol. 19(2), pages 473-502, June.
    2. Kucharski, Rafał & Gentile, Guido, 2019. "Simulation of rerouting phenomena in Dynamic Traffic Assignment with the Information Comply Model," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 414-441.
    3. Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
    4. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    5. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    6. F. Crawford & D. P. Watling & R. D. Connors, 2023. "Analysing Spatial Intrapersonal Variability of Road Users Using Point-to-Point Sensor Data," Networks and Spatial Economics, Springer, vol. 23(2), pages 373-406, June.
    7. Han, Xiao & Yu, Yun & Gao, Zi-You & Zhang, H. Michael, 2021. "The value of pre-trip information on departure time and route choice in the morning commute under stochastic traffic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 205-226.
    8. Dong-Fan Xie & Xiao-Mei Zhao, 2020. "Traffic Dynamics and Mode Choice’s Delay Effect Under Traffic Restriction in Two-Mode Networks," Networks and Spatial Economics, Springer, vol. 20(3), pages 873-913, September.
    9. Fosgerau, Mogens & Jiang, Gege, 2019. "Travel time variability and rational inattention," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 1-14.
    10. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    11. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    12. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    13. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    14. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    15. Zhu, Zheng & Li, Xinwei & Liu, Wei & Yang, Hai, 2019. "Day-to-day evolution of departure time choice in stochastic capacity bottleneck models with bounded rationality and various information perceptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 168-192.
    16. Jiang, Gege & Fosgerau, Mogens & Lo, Hong K., 2020. "Route choice, travel time variability, and rational inattention," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 188-207.
    17. Stefano de Luca & Roberta Di Pace & Silvio Memoli & Luigi Pariota, 2020. "Sustainable Traffic Management in an Urban Area: An Integrated Framework for Real-Time Traffic Control and Route Guidance Design," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    18. Qi Zhong & Lixin Miao, 2024. "Reliability-Based Mixed Traffic Equilibrium Problem Under Endogenous Market Penetration of Connected Autonomous Vehicles and Uncertainty in Supply," Networks and Spatial Economics, Springer, vol. 24(2), pages 461-505, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fosgerau, Mogens & Jiang, Gege, 2019. "Travel time variability and rational inattention," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 1-14.
    2. Luan, Jianlin & Polak, John & Krishnan, Rajesh, 2019. "The structure of public-private sector collaboration in travel information markets: A game theoretic analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 19-38.
    3. Huang, Hai-Jun & Li, Zhi-Chun, 2007. "A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1464-1477, February.
    4. Levy, Nadav & Klein, Ido & Ben-Elia, Eran, 2018. "Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach," Research in Transportation Economics, Elsevier, vol. 68(C), pages 46-55.
    5. Thierry Blayac & Maïté Stéphan, 2022. "Travel information provision and commuter behavior changes: Evidence from a french metropolis," Post-Print hal-03649092, HAL.
    6. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    8. Han, Xiao & Yu, Yun & Gao, Zi-You & Zhang, H. Michael, 2021. "The value of pre-trip information on departure time and route choice in the morning commute under stochastic traffic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 205-226.
    9. Lei Zhang & David Levinson, 2006. "Determinants of Route Choice and the Value of Traveler Information," Working Papers 200808, University of Minnesota: Nexus Research Group.
    10. Collins, Mor & Etzioni, Shelly & Ben-Elia, Eran, 2024. "Travel behavior and system dynamics in a simple gamified automated multimodal network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    11. Han, Linghui & Sun, Huijun & Wu, Jianjun & Zhu, Chengjuan, 2011. "Day-to-day evolution of the traffic network with Advanced Traveler Information System," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 914-919.
    12. Lo, Hong K. & Szeto, W. Y., 2004. "Modeling advanced traveler information services: static versus dynamic paradigms," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 495-515, July.
    13. Zhang, Rong & Verhoef, Erik T., 2006. "A monopolistic market for advanced traveller information systems and road use efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 424-443, June.
    14. Kasun P Wijayaratna & Vinayak V Dixit & Laurent Denant-Boemont & S Travis Waller, 2017. "An experimental study of the Online Information Paradox: Does en-route information improve road network performance?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-17, September.
    15. Sun, Xiaoyan & Li, Wentao & Jiang, Rui & Zhu, Yubing & Chen, Dong, 2022. "Study on the influence of road capacity and information feedback on urban traffic system equilibrium state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    16. Zhang, Zhao-Ze & Huang, Hai-Jun & Tang, Tie-Qiao, 2018. "Impacts of preceding information on travelers’ departure time behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 523-529.
    17. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    18. Wei, Fangfang & Jia, Ning & Ma, Shoufeng, 2016. "Day-to-day traffic dynamics considering social interaction: From individual route choice behavior to a network flow model," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 335-354.
    19. Jiang, Gege & Fosgerau, Mogens & Lo, Hong K., 2020. "Route choice, travel time variability, and rational inattention," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 188-207.
    20. Meneguzzer, Claudio, 2022. "Day-to-day dynamics in a simple traffic network with mixed direct and contrarian route choice behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:92:y:2016:i:pa:p:73-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.