IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v38y2004i6p495-515.html
   My bibliography  Save this article

Modeling advanced traveler information services: static versus dynamic paradigms

Author

Listed:
  • Lo, Hong K.
  • Szeto, W. Y.

Abstract

This paper develops a cell-based variational inequality formulation of the dynamic traffic assignment (DTA) problem to evaluate the impact of advanced traveler information systems (ATIS) services. It considers two classes of drivers: those with ATIS and those without. Both classes are modeled to follow the stochastic dynamic user optimal conditions, with the equipped drivers having a lower perception variation of the network travel time due to the availability of better information. The model represents traffic dynamics according to the cell-transmission model, including such physical effects as queue spillback, shockwaves, etc. One objective of this study is to compare and contrast the static versus the dynamic modeling paradigms for this problem. The numerical study indicates that some aspects of the results from these two paradigms could be diametrical. The discrepancy is mainly attributed to the fundamental characteristic of a model--how traffic is represented. It appears that simplifications from the physical queue representation are inadequate in producing correct results, especially for already congested networks wherein junction blockage is common.

Suggested Citation

  • Lo, Hong K. & Szeto, W. Y., 2004. "Modeling advanced traveler information services: static versus dynamic paradigms," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 495-515, July.
  • Handle: RePEc:eee:transb:v:38:y:2004:i:6:p:495-515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(03)00078-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanafani, A. & Al-Deek, H., 1991. "A simple model for route guidance benefits," Transportation Research Part B: Methodological, Elsevier, vol. 25(4), pages 191-201, August.
    2. Patrick T. Harker, 1988. "Multiple Equilibrium Behaviors on Networks," Transportation Science, INFORMS, vol. 22(1), pages 39-46, February.
    3. Bennett, Lloyd D., 1993. "The existence of equivalent mathematical programs for certain mixed equilibrium traffic assignment problems," European Journal of Operational Research, Elsevier, vol. 71(2), pages 177-187, December.
    4. Lo, Hong K. & Szeto, W. Y., 2002. "A cell-based variational inequality formulation of the dynamic user optimal assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 421-443, June.
    5. Lo, Hong K. & Szeto, W. Y., 2002. "A methodology for sustainable traveler information services," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 113-130, February.
    6. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    7. Al-Deek, Haitham M. & Khattak, Asad J. & Thananjeyan, Paramsothy, 1998. "A combined traveler behavior and system performance model with advanced traveler information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 479-493, September.
    8. Yang, Hai, 1998. "Multiple equilibrium behaviors and advanced traveler information systems with endogenous market penetration," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 205-218, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
    2. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    3. W. Szeto & Y. Jiang & D. Wang & A. Sumalee, 2015. "A Sustainable Road Network Design Problem with Land Use Transportation Interaction over Time," Networks and Spatial Economics, Springer, vol. 15(3), pages 791-822, September.
    4. Lei Zhang & David Levinson, 2006. "Determinants of Route Choice and the Value of Traveler Information," Working Papers 200808, University of Minnesota: Nexus Research Group.
    5. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    6. Zhang, J. & Meng, M. & Wang, David, Z.W., 2019. "A dynamic pricing scheme with negative prices in dockless bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 201-224.
    7. Huang, Hai-Jun & Li, Zhi-Chun, 2007. "A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1464-1477, February.
    8. Luan, Jianlin & Polak, John & Krishnan, Rajesh, 2019. "The structure of public-private sector collaboration in travel information markets: A game theoretic analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 19-38.
    9. Lu, Xiao-Yun & Gosling, Geoffrey D. & Ceder, Avi & Tung, Steven & Tso, Kristin & Shladover, Steven & Xiong, Jing & Yoon, Sangwon, 2009. "A Combined Quantitative and Qualitative Approach to Planning for Improved Intermodal Connectivity at California Airports," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1r7227tt, Institute of Transportation Studies, UC Berkeley.
    10. Bifulco, Gennaro N. & Cantarella, Giulio E. & Simonelli, Fulvio & VelonĂ , Pietro, 2016. "Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 73-87.
    11. Qi Zhong & Lixin Miao, 2024. "Reliability-Based Mixed Traffic Equilibrium Problem Under Endogenous Market Penetration of Connected Autonomous Vehicles and Uncertainty in Supply," Networks and Spatial Economics, Springer, vol. 24(2), pages 461-505, June.
    12. Zhi-Chun Li & William Lam & S. Wong & Hai-Jun Huang & Dao-Li Zhu, 2008. "Reliability Evaluation for Stochastic and Time-dependent Networks with Multiple Parking Facilities," Networks and Spatial Economics, Springer, vol. 8(4), pages 355-381, December.
    13. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Hai-Jun & Li, Zhi-Chun, 2007. "A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1464-1477, February.
    2. Lo, Hong K. & Szeto, W. Y., 2002. "A methodology for sustainable traveler information services," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 113-130, February.
    3. Hai Yang, 1999. "Evaluating the benefits of a combined route guidance and road pricing system in a traffic network with recurrent congestion," Transportation, Springer, vol. 26(3), pages 299-322, August.
    4. (Walker) Wang, Wei & Wang, David Z.W. & Sun, Huijun & Feng, Zengzhe & Wu, Jianjun, 2016. "Braess Paradox of traffic networks with mixed equilibrium behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 95-114.
    5. Yang, Hai, 1998. "Multiple equilibrium behaviors and advanced traveler information systems with endogenous market penetration," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 205-218, April.
    6. Bifulco, Gennaro N. & Cantarella, Giulio E. & Simonelli, Fulvio & VelonĂ , Pietro, 2016. "Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 73-87.
    7. Lei Zhang & David Levinson, 2006. "Determinants of Route Choice and the Value of Traveler Information," Working Papers 200808, University of Minnesota: Nexus Research Group.
    8. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    9. Zhang, Rong & Verhoef, Erik T., 2006. "A monopolistic market for advanced traveller information systems and road use efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 424-443, June.
    10. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    11. Jang, Wonjae & Ran, Bin & Choi, Keechoo, 2005. "A discrete time dynamic flow model and a formulation and solution method for dynamic route choice," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 593-620, August.
    12. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Szeto, W. Y. & Lo, Hong K., 2004. "A cell-based simultaneous route and departure time choice model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 593-612, August.
    14. Blumberg, Michal & Bar-Gera, Hillel, 2009. "Consistent node arrival order in dynamic network loading models," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 285-300, March.
    15. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    16. Nie, Yu (Marco) & Zhang, H.M., 2008. "A variational inequality formulation for inferring dynamic origin-destination travel demands," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 635-662, August.
    17. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    18. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    19. Rui Ma & Xuegang (Jeff) Ban & Jong-Shi Pang, 2018. "A Link-Based Differential Complementarity System Formulation for Continuous-Time Dynamic User Equilibria with Queue Spillbacks," Transportation Science, INFORMS, vol. 52(3), pages 564-592, June.
    20. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:38:y:2004:i:6:p:495-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.