IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2923-d1059364.html
   My bibliography  Save this article

Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints

Author

Listed:
  • Zhaoming Zhou

    (School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
    College of Civil Engineering, Hunan City University, Yiyang 413000, China)

  • Jianbo Yuan

    (School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Shengmin Zhou

    (Xiangtan Technology Research Center of Urban Planning Information, Xiangtan 411100, China)

  • Qiong Long

    (College of Civil Engineering, Hunan City University, Yiyang 413000, China)

  • Jianrong Cai

    (College of Civil Engineering, Hunan City University, Yiyang 413000, China)

  • Lei Zhang

    (College of Civil Engineering, Hunan City University, Yiyang 413000, China)

Abstract

Based on analytical and simulation methods, this paper discusses the path choice behavior of mixed traffic flow with autonomous vehicles, advanced traveler information systems (ATIS) vehicles and ordinary vehicles, aiming to promote the development of autonomous vehicles. Firstly, a bi-level programming model of mixed traffic flow assignments constrained by link capacity is established to minimize travel time. Subsequently, the algorithm based on the incremental allocation method and method of successive averages is proposed to solve the model. Through a numerical example, the road network capacity under different modes is obtained, the impact of market penetration on travel time is analyzed, and the state and characteristics of single equilibrium flow and mixed equilibrium flow are explored. Analysis results show that the road network can be maximized based on saving travel time when all vehicles are autonomous, especially when the autonomous lane is adopted. The travel time can be shortened by increasing the market penetration of autonomous vehicles and ATIS vehicles, while the former is more effective. However, the popularization of autonomous vehicles cannot be realized in the short term; the market penetration of autonomous vehicles and ATIS vehicles can be set to 0.2 and 0.6, respectively, during the introduction period.

Suggested Citation

  • Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2923-:d:1059364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    2. Yao, Zhihong & Hu, Rong & Wang, Yi & Jiang, Yangsheng & Ran, Bin & Chen, Yanru, 2019. "Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    3. Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
    4. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    5. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    6. Yin, Yafeng & Yang, Hai, 2003. "Simultaneous determination of the equilibrium market penetration and compliance rate of advanced traveler information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 165-181, February.
    7. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    8. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Tan, Zhijia, 2015. "Link-based day-to-day network traffic dynamics and equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 248-260.
    9. Bifulco, Gennaro N. & Cantarella, Giulio E. & Simonelli, Fulvio & Velonà, Pietro, 2016. "Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 73-87.
    10. Wang, Jian & Peeta, Srinivas & He, Xiaozheng, 2019. "Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 139-168.
    11. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    12. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    13. Yang, Hai, 1998. "Multiple equilibrium behaviors and advanced traveler information systems with endogenous market penetration," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 205-218, April.
    14. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    15. Chen, Zhibin & He, Fang & Yin, Yafeng & Du, Yuchuan, 2017. "Optimal design of autonomous vehicle zones in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 44-61.
    16. Mohammed Al-Turki & Nedal T. Ratrout & Syed Masiur Rahman & Imran Reza, 2021. "Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    17. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruru Xing & Fei Wang & Xiaoyu Cai & Ning Chen & Tao Yang & Bo Peng, 2023. "A Regional Road Network Capacity Estimation Model for Mountainous Cities Based on Auxiliary Map," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    2. Yanlu Yang & Yiyuan Wang & Jun Liu & Kidong Lee, 2024. "An Empirical Study on the Structural Assurance Mechanism for Trust Building in Autonomous Vehicles Based on the Trust-in-Automation Three-Factor Model," Sustainability, MDPI, vol. 16(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2022. "Integrated path controlling and subsidy scheme for mobility and environmental management in automated transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    3. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    5. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    6. Chen, Shuiwang & Hu, Lu & Yao, Zhihong & Zhu, Juanxiu & Zhao, Bin & Jiang, Yangsheng, 2022. "Efficient and environmentally friendly operation of intermittent dedicated lanes for connected autonomous vehicles in mixed traffic environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    7. Qi Zhong & Lixin Miao, 2024. "Reliability-Based Mixed Traffic Equilibrium Problem Under Endogenous Market Penetration of Connected Autonomous Vehicles and Uncertainty in Supply," Networks and Spatial Economics, Springer, vol. 24(2), pages 461-505, June.
    8. Li, Ruijie & Liu, Xiaobo & Nie, Yu (Marco), 2018. "Managing partially automated network traffic flow: Efficiency vs. stability," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 300-324.
    9. Muhammad Azam & Sitti Asmah Hassan & Othman Che Puan, 2022. "Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    10. Wei Nai & Zan Yang & Dan Li & Lu Liu & Yuting Fu & Yuao Guo, 2024. "Urban Day-to-Day Travel and Its Development in an Information Environment: A Review," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    11. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    12. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    13. Han, Linghui & Sun, Huijun & Wu, Jianjun & Zhu, Chengjuan, 2011. "Day-to-day evolution of the traffic network with Advanced Traveler Information System," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 914-919.
    14. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    15. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    16. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    17. Wang, Guanfeng & Jia, Hongfei & Feng, Tao & Tian, Jingjing & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Modelling the dual dynamic traffic flow evolution with information perception differences between human-driven vehicles and connected autonomous vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    18. Zong, Fang & Wang, Meng & Tang, Jinjun & Zeng, Meng, 2022. "Modeling AVs & RVs’ car-following behavior by considering impacts of multiple surrounding vehicles and driving characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    19. Yao, Zhihong & Li, Le & Liao, Wenbin & Wang, Yi & Wu, Yunxia, 2024. "Optimal lane management policy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    20. Watling, David P. & Hazelton, Martin L., 2018. "Asymptotic approximations of transient behaviour for day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 90-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2923-:d:1059364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.