IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p726-d310634.html
   My bibliography  Save this article

Sustainable Traffic Management in an Urban Area: An Integrated Framework for Real-Time Traffic Control and Route Guidance Design

Author

Listed:
  • Stefano de Luca

    (Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy)

  • Roberta Di Pace

    (Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy)

  • Silvio Memoli

    (Department of Mobility, Infrastructures and Public works, Municipality of Naples, piazza Municipio, 80133 Naples, Italy)

  • Luigi Pariota

    (Department of Civil, Architectural and Environmental Engineering, University of Naples “Federico II” via Claudio 21, 80125 Naples, Italy)

Abstract

This paper focuses on the presentation of an integrated framework based on two advanced strategies, aimed at mitigating the effect of traffic congestion in terms of performance and environmental impact. In particular, the paper investigates the “operational benefits” that can be derived from the combination of traffic control (TC) and route guidance (RG) strategies. The framework is based on two modules and integrates a within-day traffic control method and a day-to-day behavioral route choice model. The former module consists of an enhanced traffic control model that can be applied to design traffic signal decision variables, suitable for real-time optimization. The latter designs the information consistently with predictive user reactions to the information itself. The proposed framework is implemented to a highly congested sub-network in the city center of Naples (Italy) and different scenarios are tested and compared. The “do nothing” scenario (current; DN) and the “modeled compliance” (MC) scenario, in which travelers’ reaction to the information (i.e., compliance) is explicitly represented. In order to evaluate the effectiveness of the proposed strategy and the modeling framework, the following analyses are carried out: (i) Network performance analysis; (ii) system convergence and stability analysis, as well as the compliance evolution over time; (iii) and emissions and fuel consumption impact analysis.

Suggested Citation

  • Stefano de Luca & Roberta Di Pace & Silvio Memoli & Luigi Pariota, 2020. "Sustainable Traffic Management in an Urban Area: An Integrated Framework for Real-Time Traffic Control and Route Guidance Design," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:726-:d:310634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moshe Ben-Akiva & Haris N. Koutsopoulos & Constantinos Antoniou & Ramachandran Balakrishna, 2010. "Traffic Simulation with DynaMIT," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 363-398, Springer.
    2. Zhang, Ding & Nagurney, Anna, 1996. "On the local and global stability of a travel route choice adjustment process," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 245-262, August.
    3. Han, Linghui & Sun, Huijun & Wu, Jianjun & Zhu, Chengjuan, 2011. "Day-to-day evolution of the traffic network with Advanced Traveler Information System," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 914-919.
    4. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    5. Bie, Jing & Lo, Hong K., 2010. "Stability and attraction domains of traffic equilibria in a day-to-day dynamical system formulation," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 90-107, January.
    6. Margherita Mascia & Simon Hu & Ke Han & Robin North & Martine Poppel & Jan Theunis & Carolien Beckx & Martin Litzenberger, 2017. "Impact of Traffic Management on Black Carbon Emissions: a Microsimulation Study," Networks and Spatial Economics, Springer, vol. 17(1), pages 269-291, March.
    7. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    8. Bifulco, Gennaro N. & Cantarella, Giulio E. & Simonelli, Fulvio & Velonà, Pietro, 2016. "Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 73-87.
    9. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    10. Avinash Unnikrishnan & Steven Waller, 2009. "User Equilibrium with Recourse," Networks and Spatial Economics, Springer, vol. 9(4), pages 575-593, December.
    11. Memoli, Silvio & Cantarella, Giulio E. & de Luca, Stefano & Pace, Roberta Di, 2017. "Network signal setting design with stage sequence optimisation," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 20-42.
    12. Liu, Ronghui & Van Vliet, Dirck & Watling, David, 2006. "Microsimulation models incorporating both demand and supply dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 125-150, February.
    13. Melo, Sandra & Macedo, Joaquim & Baptista, Patrícia, 2017. "Guiding cities to pursue a smart mobility paradigm: An example from vehicle routing guidance and its traffic and operational effects," Research in Transportation Economics, Elsevier, vol. 65(C), pages 24-33.
    14. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    15. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farnaz Khaghani & Farrokh Jazizadeh, 2020. "mD-Resilience: A Multi-Dimensional Approach for Resilience-Based Performance Assessment in Urban Transportation," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    2. Di Pace, Roberta & Storani, Facundo & Guarnaccia, Claudio & de Luca, Stefano, 2023. "Signal setting design to reduce noise emissions in a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    3. Barroso, Joana Maia Fernandes & Albuquerque-Oliveira, João Lucas & Oliveira-Neto, Francisco Moraes, 2020. "Correlation analysis of day-to-day origin-destination flows and traffic volumes in urban networks," Journal of Transport Geography, Elsevier, vol. 89(C).
    4. Zhanzhong Wang & Ruijuan Chu & Minghang Zhang & Xiaochao Wang & Siliang Luan, 2020. "An Improved Hybrid Highway Traffic Flow Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    5. Dan Su & Yi-Sheng Liu & Xin-Tong Li & Xiao-Yan Chen & Dong-Han Li, 2020. "Management Path of Concrete Beam Bridge in China from the Perspective of Sustainable Development," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
    6. Ji-Shuang Tan & Khalid Elbaz & Zhi-Feng Wang & Jack Shui Shen & Jun Chen, 2020. "Lessons Learnt from Bridge Collapse: A View of Sustainable Management," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    7. Wang, Jiawen & You, Lan & Hang, Jiayu & Zhao, Jing, 2023. "Pre-trip reservation enabled route guidance and signal control cooperative method for improving network throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    2. Peeta, Srinivas, 2016. "A marginal utility day-to-day traffic evolution model based on one-step strategic thinkingAuthor-Name: He, Xiaozheng," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 237-255.
    3. G. E. Cantarella & D. P. Watling, 2016. "Modelling road traffic assignment as a day-to-day dynamic, deterministic process: a unified approach to discrete- and continuous-time models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 69-98, March.
    4. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.
    5. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    6. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    7. Meneguzzer, Claudio, 2022. "Day-to-day dynamics in a simple traffic network with mixed direct and contrarian route choice behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Kucharski, Rafał & Gentile, Guido, 2019. "Simulation of rerouting phenomena in Dynamic Traffic Assignment with the Information Comply Model," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 414-441.
    9. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    10. Li, Xinghua & Zhang, Xinyuan & Qian, Xinwu & Zhao, Cong & Guo, Yuntao & Peeta, Srinivas, 2024. "Beyond centralization: Non-cooperative perimeter control with extended mean-field reinforcement learning in urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    11. Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
    12. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    13. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    14. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    15. Han, Linghui & Zhu, Chengjuan & Wang, David Z.W. & Sun, Huijun & Tan, Zhijia & Meng, Meng, 2019. "Discrete-time dynamic road congestion pricing under stochastic user optimal principle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 24-36.
    16. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    17. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    18. Gao, Yang & Levinson, David, 2024. "A multi-stage spatial queueing model with logistic arrivals and departures consistent with the microscopic fundamental diagram and hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    19. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    20. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:726-:d:310634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.