No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ribaf.2022.101649
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
- Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
- Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03380580, HAL.
- du Jardin, Philippe, 2016. "A two-stage classification technique for bankruptcy prediction," European Journal of Operational Research, Elsevier, vol. 254(1), pages 236-252.
- Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03529325, HAL.
- Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Climent, Francisco & Momparler, Alexandre & Carmona, Pedro, 2019. "Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach," Journal of Business Research, Elsevier, vol. 101(C), pages 885-896.
- Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
- M. B. Rapanyane & F. R. Sethole, 2020. "The rise of artificial intelligence and robots in the 4th Industrial Revolution: implications for future South African job creation," Contemporary Social Science, Taylor & Francis Journals, vol. 15(4), pages 489-501, October.
- Stolbov, Mikhail & Shchepeleva, Maria, 2020. "Systemic risk, economic policy uncertainty and firm bankruptcies: Evidence from multivariate causal inference," Research in International Business and Finance, Elsevier, vol. 52(C).
- Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
- Carmona, Pedro & Climent, Francisco & Momparler, Alexandre, 2019. "Predicting failure in the U.S. banking sector: An extreme gradient boosting approach," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 304-323.
- Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
- Alessio Faccia & Francesco Manni & Fabian Capitanio, 2021. "Mandatory ESG Reporting and XBRL Taxonomies Combination: ESG Ratings and Income Statement, a Sustainable Value-Added Disclosure," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xue, Qinyuan & Jin, Yifei & Zhang, Cheng, 2024. "ESG rating results and corporate total factor productivity," International Review of Financial Analysis, Elsevier, vol. 95(PA).
- Aslam, Faheem & Hunjra, Ahmed Imran & Ftiti, Zied & Louhichi, Wael & Shams, Tahira, 2022. "Insurance fraud detection: Evidence from artificial intelligence and machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).
- Pezoa, Raúl & Basso, Franco & Quilodrán, Paulina & Varas, Mauricio, 2023. "Estimation of trip purposes in public transport during the COVID-19 pandemic: The case of Santiago, Chile," Journal of Transport Geography, Elsevier, vol. 109(C).
- Chen, Xun-Qi & Ma, Chao-Qun & Ren, Yi-Shuai & Lei, Yu-Tian & Huynh, Ngoc Quang Anh & Narayan, Seema, 2023. "Explainable artificial intelligence in finance: A bibliometric review," Finance Research Letters, Elsevier, vol. 56(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Yang Liu & Qingguo Zeng & Bobo Li & Lili Ma & Joaquín Ordieres‐Meré, 2022. "Anticipating financial distress of high‐tech startups in the European Union: A machine learning approach for imbalanced samples," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1131-1155, September.
- Oz, Ibrahim Onur & Yelkenci, Tezer & Meral, Gorkem, 2021. "The role of earnings components and machine learning on the revelation of deteriorating firm performance," International Review of Financial Analysis, Elsevier, vol. 77(C).
- ElBannan, Mona A., 2021. "On the prediction of financial distress in emerging markets: What matters more? Empirical evidence from Arab spring countries," Emerging Markets Review, Elsevier, vol. 47(C).
- Daniel Ogachi & Richard Ndege & Peter Gaturu & Zeman Zoltan, 2020. "Corporate Bankruptcy Prediction Model, a Special Focus on Listed Companies in Kenya," JRFM, MDPI, vol. 13(3), pages 1-14, March.
- Mselmi, Nada & Hamza, Taher & Lahiani, Amine & Shahbaz, Muhammad, 2019. "Pricing corporate financial distress: Empirical evidence from the French stock market," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 13-27.
- Seiler, Volker & Fanenbruck, Katharina Maria, 2021. "Acceptance of digital investment solutions: The case of robo advisory in Germany," Research in International Business and Finance, Elsevier, vol. 58(C).
- Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
- Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Yuan, Kunpeng & Chi, Guotai & Zhou, Ying & Yin, Hailei, 2022. "A novel two-stage hybrid default prediction model with k-means clustering and support vector domain description," Research in International Business and Finance, Elsevier, vol. 59(C).
- Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
- Alexandra Horobet & Stefania Cristina Curea & Alexandra Smedoiu Popoviciu & Cosmin-Alin Botoroga & Lucian Belascu & Dan Gabriel Dumitrescu, 2021. "Solvency Risk and Corporate Performance: A Case Study on European Retailers," JRFM, MDPI, vol. 14(11), pages 1-34, November.
- Bravo-Urquiza, Francisco & Moreno-Ureba, Elena, 2021. "Does compliance with corporate governance codes help to mitigate financial distress?," Research in International Business and Finance, Elsevier, vol. 55(C).
- Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
- Ding, Shusheng & Cui, Tianxiang & Bellotti, Anthony Graham & Abedin, Mohammad Zoynul & Lucey, Brian, 2023. "The role of feature importance in predicting corporate financial distress in pre and post COVID periods: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Christophe Schalck & Meryem Yankol-Schalck, 2021.
"Predicting French SME failures: new evidence from machine learning techniques,"
Applied Economics, Taylor & Francis Journals, vol. 53(51), pages 5948-5963, November.
- Christophe Schalck & Meryem Schalck, 2021. "Predicting French SME Failures: New Evidence from Machine Learning Techniques," Working Papers 2021-009, Department of Research, Ipag Business School.
- Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
- Pham, Xuan T.T. & Ho, Tin H., 2021. "Using boosting algorithms to predict bank failure: An untold story," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 40-54.
- Manthoulis, Georgios & Doumpos, Michalis & Zopounidis, Constantin & Galariotis, Emilios, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," European Journal of Operational Research, Elsevier, vol. 282(2), pages 786-801.
- Pham, Tho & Talavera, Oleksandr & Wood, Geoffrey & Yin, Shuxing, 2022.
"Quality of working environment and corporate financial distress,"
Finance Research Letters, Elsevier, vol. 46(PB).
- Tho Pham & Oleksandr Talavera & Geoffrey Wood & Shuxing Yin, 2021. "Quality of working environment and corporate financial distress," Discussion Papers 21-04, Department of Economics, University of Birmingham.
More about this item
Keywords
Business failure; Machine learning; XGBoost; Model interpretability;All these keywords.
JEL classification:
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
- C - Mathematical and Quantitative Methods
- C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:61:y:2022:i:c:s027553192200037x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.