Insurance fraud detection: Evidence from artificial intelligence and machine learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ribaf.2022.101744
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
- Yu, Lean & Huang, Xiaowen & Yin, Hang, 2020. "Can machine learning paradigm improve attribute noise problem in credit risk classification?," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 440-455.
- Aderemi O. Adewumi & Andronicus A. Akinyelu, 2017. "A survey of machine-learning and nature-inspired based credit card fraud detection techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 937-953, November.
- Yu, Lean & Yao, Xiao & Zhang, Xiaoming & Yin, Hang & Liu, Jia, 2020. "A novel dual-weighted fuzzy proximal support vector machine with application to credit risk analysis," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
- Carmona, Pedro & Dwekat, Aladdin & Mardawi, Zeena, 2022. "No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure," Research in International Business and Finance, Elsevier, vol. 61(C).
- Hanauer, Matthias X. & Kononova, Marina & Rapp, Marc Steffen, 2022. "Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets," Finance Research Letters, Elsevier, vol. 48(C).
- Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Liu, Tingting & Lu, Zhongjin (Gene) & Shu, Tao & Wei, Fengrong, 2022. "Unique bidder-target relatedness and synergies creation in mergers and acquisitions," Journal of Corporate Finance, Elsevier, vol. 73(C).
- Mohamed Hanafy & Ruixing Ming, 2021. "Machine Learning Approaches for Auto Insurance Big Data," Risks, MDPI, vol. 9(2), pages 1-23, February.
- Liu, Ruicheng & Pun, Chi Seng, 2022. "Machine-Learning-enhanced systemic risk measure: A Two-Step supervised learning approach," Journal of Banking & Finance, Elsevier, vol. 136(C).
- Véronique Van Vlasselaer & Tina Eliassi-Rad & Leman Akoglu & Monique Snoeck & Bart Baesens, 2017. "GOTCHA! Network-Based Fraud Detection for Social Security Fraud," Management Science, INFORMS, vol. 63(9), pages 3090-3110, September.
- Harel, Arie & Harpaz, Giora, 2021. "Forecasting stock prices," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 249-256.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
- Chamal Gomes & Zhuo Jin & Hailiang Yang, 2021. "Insurance fraud detection with unsupervised deep learning," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 591-624, September.
- Polyzos, Stathis & Samitas, Aristeidis & Kampouris, Ilias, 2021. "Economic stimulus through bank regulation: Government responses to the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
- William Lesch & Johannes Brinkmann, 2011. "Consumer Insurance Fraud/Abuse as Co-creation and Co-responsibility: A New Paradigm," Journal of Business Ethics, Springer, vol. 103(1), pages 17-32, April.
- Michael Danquah & David Mensah Otoo & Amoah Baah†Nuakoh, 2018. "Cost efficiency of insurance firms in Ghana," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 39(2), pages 213-225, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
- Vecchi, Edoardo & Berra, Gabriele & Albrecht, Steffen & Gagliardini, Patrick & Horenko, Illia, 2023. "Entropic approximate learning for financial decision-making in the small data regime," Research in International Business and Finance, Elsevier, vol. 65(C).
- Sun, Weikang & Wei, Zhiqi & Zou, Shixiang, 2024. "Exploring the impact of religious diversity on market performance and financial growth in developed economies," Research in International Business and Finance, Elsevier, vol. 71(C).
- Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
- Fazlollah Soleymani & Houman Masnavi & Stanford Shateyi, 2020. "Classifying a Lending Portfolio of Loans with Dynamic Updates via a Machine Learning Technique," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
- Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
- Bolívar, Fernando & Duran, Miguel A. & Lozano-Vivas, Ana, 2023.
"Business model contributions to bank profit performance: A machine learning approach,"
Research in International Business and Finance, Elsevier, vol. 64(C).
- F. Bolivar & Miguel A. Duran & A. Lozano-Vivas, 2024. "Business Model Contributions to Bank Profit Performance: A Machine Learning Approach," Papers 2401.12334, arXiv.org.
- Wang, Dan & Chen, Zhi & Florescu, Ionuţ & Wen, Bingyang, 2023. "A sparsity algorithm for finding optimal counterfactual explanations: Application to corporate credit rating," Research in International Business and Finance, Elsevier, vol. 64(C).
- Rama K. Malladi, 2024. "Application of Supervised Machine Learning Techniques to Forecast the COVID-19 U.S. Recession and Stock Market Crash," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1021-1045, March.
- Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
- Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022.
"Artificial intelligence and machine learning in finance: A bibliometric review,"
Research in International Business and Finance, Elsevier, vol. 61(C).
- Shamima Ahmed & Muneer Alshater & Anis El Ammari & Helmi Hammami, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Post-Print hal-03697290, HAL.
- Michele Tumminello & Andrea Consiglio & Pietro Vassallo & Riccardo Cesari & Fabio Farabullini, 2023. "Insurance fraud detection: A statistically validated network approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 381-419, June.
- Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
- Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
- Wang, Deshen & Chen, Bintong & Chen, Jing, 2019. "Credit card fraud detection strategies with consumer incentives," Omega, Elsevier, vol. 88(C), pages 179-195.
- Zhao, Guoqing & Bi, Xiaohan & Zhai, Kun & Yuan, Xuemei, 2024. "Influence of digital transformation on banks’ systemic risk in China," Finance Research Letters, Elsevier, vol. 63(C).
- Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
- Klockmann, Victor & von Schenk, Alicia & Villeval, Marie Claire, 2022.
"Artificial intelligence, ethics, and intergenerational responsibility,"
Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 284-317.
- Victor Klockmann & Alicia von Schenk & Marie Claire Villeval, 2021. "Artificial Intelligence, Ethics, and Intergenerational Responsibility," Working Papers halshs-03237437, HAL.
- Victor Klockmann & Alicia von Schenk & Marie Claire Villeval, 2021. "Artificial Intelligence, Ethics, and Intergenerational Responsibility," Working Papers 2110, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
- Klockmann, Victor & von Schenk, Alicia & Villeval, Marie-Claire, 2022. "Artificial intelligence, ethics, and intergenerational responsibility," SAFE Working Paper Series 335, Leibniz Institute for Financial Research SAFE.
- Victor Klockmann & Alicia von Schenk & Marie Claire Villeval, 2022. "Artificial Intelligence, Ethics, and Intergenerational Responsibility," Post-Print hal-03778525, HAL.
- Guo, Wen-Chung & Tseng, Ping-Lun, 2023. "COVID-19, bank risk, and capital regulation: The aggregate shock and social distancing," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 155-173.
- Vasilios Plakandaras & Elie Bouri & Rangan Gupta, 2019. "Forecasting Bitcoin Returns: Is there a Role for the U.S. – China Trade War?," Working Papers 201980, University of Pretoria, Department of Economics.
More about this item
Keywords
Insurance; Financial decision making; Predictive models; Fraud detection; Machine learning; Boruta algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:62:y:2022:i:c:s0275531922001325. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.