IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i12p230-d990714.html
   My bibliography  Save this article

Explainable Artificial Intelligence (XAI) in Insurance

Author

Listed:
  • Emer Owens

    (Department of Accounting and Finance, University of Limerick, V94 PH93 Limerick, Ireland)

  • Barry Sheehan

    (Department of Accounting and Finance, University of Limerick, V94 PH93 Limerick, Ireland)

  • Martin Mullins

    (Department of Accounting and Finance, University of Limerick, V94 PH93 Limerick, Ireland)

  • Martin Cunneen

    (Department of Accounting and Finance, University of Limerick, V94 PH93 Limerick, Ireland)

  • Juliane Ressel

    (Department of Accounting and Finance, University of Limerick, V94 PH93 Limerick, Ireland
    Research Center for the Insurance Market, Institute for Insurance Studies, TH Köln, 50968 Cologne, Germany)

  • German Castignani

    (Motion-S S.A., Avenue des Bains 4, Mondorf-les-Bains, L-5610 Luxembourg, Luxembourg
    Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, L-4365 Luxembourg, Luxembourg)

Abstract

Explainable Artificial Intelligence (XAI) models allow for a more transparent and understandable relationship between humans and machines. The insurance industry represents a fundamental opportunity to demonstrate the potential of XAI, with the industry’s vast stores of sensitive data on policyholders and centrality in societal progress and innovation. This paper analyses current Artificial Intelligence (AI) applications in insurance industry practices and insurance research to assess their degree of explainability. Using search terms representative of (X)AI applications in insurance, 419 original research articles were screened from IEEE Xplore, ACM Digital Library, Scopus, Web of Science and Business Source Complete and EconLit. The resulting 103 articles (between the years 2000–2021) representing the current state-of-the-art of XAI in insurance literature are analysed and classified, highlighting the prevalence of XAI methods at the various stages of the insurance value chain. The study finds that XAI methods are particularly prevalent in claims management, underwriting and actuarial pricing practices. Simplification methods, called knowledge distillation and rule extraction, are identified as the primary XAI technique used within the insurance value chain. This is important as the combination of large models to create a smaller, more manageable model with distinct association rules aids in building XAI models which are regularly understandable. XAI is an important evolution of AI to ensure trust, transparency and moral values are embedded within the system’s ecosystem. The assessment of these XAI foci in the context of the insurance industry proves a worthwhile exploration into the unique advantages of XAI, highlighting to industry professionals, regulators and XAI developers where particular focus should be directed in the further development of XAI. This is the first study to analyse XAI’s current applications within the insurance industry, while simultaneously contributing to the interdisciplinary understanding of applied XAI. Advancing the literature on adequate XAI definitions, the authors propose an adapted definition of XAI informed by the systematic review of XAI literature in insurance.

Suggested Citation

  • Emer Owens & Barry Sheehan & Martin Mullins & Martin Cunneen & Juliane Ressel & German Castignani, 2022. "Explainable Artificial Intelligence (XAI) in Insurance," Risks, MDPI, vol. 10(12), pages 1-50, December.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:12:p:230-:d:990714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/12/230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/12/230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A C Yeo & K A Smith & R J Willis & M Brooks, 2002. "A mathematical programming approach to optimise insurance premium pricing within a data mining framework," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(11), pages 1197-1203, November.
    2. K A Smith & R J Willis & M Brooks, 2000. "An analysis of customer retention and insurance claim patterns using data mining: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 532-541, May.
    3. P H Anantha Desik & Samarendra Behera, 2012. "Acquiring Insurance Customer: The CHAID Way," The IUP Journal of Knowledge Management, IUP Publications, vol. 0(3), pages 7-13, July.
    4. Aidan Hollis & Jason Strauss, "undated". "Privacy, Driving Data and Automobile Insurance: An Economic Analysis," Working Papers 2008-13, Department of Economics, University of Calgary, revised 14 Feb 2008.
    5. Cristina UNGUR, 2017. "Socio-Economic Valences Of Insurance," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 2(2), pages 112-118.
    6. Lara Marie Demajo & Vince Vella & Alexiei Dingli, 2020. "Explainable AI for Interpretable Credit Scoring," Papers 2012.03749, arXiv.org.
    7. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    8. Kevin Kuo & Daniel Lupton, 2020. "Towards Explainability of Machine Learning Models in Insurance Pricing," Papers 2003.10674, arXiv.org.
    9. Kamil J. Mizgier & Otto Kocsis & Stephan M. Wagner, 2018. "Zurich Insurance Uses Data Analytics to Leverage the BI Insurance Proposition," Interfaces, INFORMS, vol. 48(2), pages 94-107, April.
    10. Devriendt, Sander & Antonio, Katrien & Reynkens, Tom & Verbelen, Roel, 2021. "Sparse regression with Multi-type Regularized Feature modeling," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 248-261.
    11. Kevin H. Kelley & Lisa M. Fontanetta & Mark Heintzman & Nikki Pereira, 2018. "Artificial Intelligence: Implications for Social Inflation and Insurance," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 21(3), pages 373-387, December.
    12. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    13. Quan Zhiyu & Valdez Emiliano A., 2018. "Predictive analytics of insurance claims using multivariate decision trees," Dependence Modeling, De Gruyter, vol. 6(1), pages 377-407, December.
    14. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    15. Robinson, Stephen Cory, 2020. "Trust, transparency, and openness: How inclusion of cultural values shapes Nordic national public policy strategies for artificial intelligence (AI)," Technology in Society, Elsevier, vol. 63(C).
    16. Şerafettin SEVİM & Birol YILDIZ & Nilüfer DALKILIÇ, 2016. "Risk Assessment for Accounting Professional Liability Insurance," Sosyoekonomi Journal, Sosyoekonomi Society, issue 24(29).
    17. Liu, Qing & Pitt, David & Wu, Xueyuan, 2014. "On the prediction of claim duration for income protection insurance policyholders," Annals of Actuarial Science, Cambridge University Press, vol. 8(1), pages 42-62, March.
    18. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    19. Paruchuri, Harish, 2020. "The Impact of Machine Learning on the Future of Insurance Industry," American Journal of Trade and Policy, Asian Business Consortium, vol. 7(3), pages 85-90.
    20. D. Harrison McKnight & Vivek Choudhury & Charles Kacmar, 2002. "Developing and Validating Trust Measures for e-Commerce: An Integrative Typology," Information Systems Research, INFORMS, vol. 13(3), pages 334-359, September.
    21. Wen Teng Chang & Kee Huong Lai, 2021. "A Neural Network-Based Approach in Predicting Consumers' Intentions of Purchasing Insurance Policies," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 2021(2), pages 138-154.
    22. Przemys{l}aw Biecek & Marcin Chlebus & Janusz Gajda & Alicja Gosiewska & Anna Kozak & Dominik Ogonowski & Jakub Sztachelski & Piotr Wojewnik, 2021. "Enabling Machine Learning Algorithms for Credit Scoring -- Explainable Artificial Intelligence (XAI) methods for clear understanding complex predictive models," Papers 2104.06735, arXiv.org.
    23. Roel Henckaerts & Marie-Pier Côté & Katrien Antonio & Roel Verbelen, 2021. "Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 255-285, April.
    24. Kim, Hyong & Gardner, Errol, 2015. "The science of winning in financial services — competing on analytics: opportunities to unlock the power of data," Journal of Financial Perspectives, EY Global FS Institute, vol. 3(2), pages 13-24.
    25. Jane Andrew & Max Baker, 2021. "The General Data Protection Regulation in the Age of Surveillance Capitalism," Journal of Business Ethics, Springer, vol. 168(3), pages 565-578, January.
    26. Alex Gramegna & Paolo Giudici, 2020. "Why to Buy Insurance? An Explainable Artificial Intelligence Approach," Risks, MDPI, vol. 8(4), pages 1-9, December.
    27. Burgt, Joost Van Der, 2020. "Explainable AI in banking," Journal of Digital Banking, Henry Stewart Publications, vol. 4(4), pages 344-350, March.
    28. Philippe Deprez & Pavel V. Shevchenko & Mario V. Wuthrich, 2017. "Machine Learning Techniques for Mortality Modeling," Papers 1705.03396, arXiv.org.
    29. Himchan Jeong & Guojun Gan & Emiliano A. Valdez, 2018. "Association Rules for Understanding Policyholder Lapses," Risks, MDPI, vol. 6(3), pages 1-18, July.
    30. Gan Guojun & Valdez Emiliano A., 2017. "Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets," Dependence Modeling, De Gruyter, vol. 5(1), pages 354-374, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bermúdez, Lluís & Anaya, David & Belles-Sampera, Jaume, 2023. "Explainable AI for paid-up risk management in life insurance products," Finance Research Letters, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    2. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    3. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    4. Şerafettin SEVİM & Birol YILDIZ & Nilüfer DALKILIÇ, 2016. "Risk Assessment for Accounting Professional Liability Insurance," Sosyoekonomi Journal, Sosyoekonomi Society, issue 24(29).
    5. Aivars Spilbergs & Andris Fomins & Māris Krastiņš, 2022. "Multivariate Modelling of Motor Third Party Liability Insurance Claims," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 8(1), pages 5-18.
    6. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    7. Thomas Poufinas & Periklis Gogas & Theophilos Papadimitriou & Emmanouil Zaganidis, 2023. "Machine Learning in Forecasting Motor Insurance Claims," Risks, MDPI, vol. 11(9), pages 1-19, September.
    8. Massimo Costabile & Fabio Viviano, 2021. "Modeling the Future Value Distribution of a Life Insurance Portfolio," Risks, MDPI, vol. 9(10), pages 1-17, October.
    9. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate," Papers 1903.00369, arXiv.org, revised Jul 2019.
    10. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    11. Jiang, Ruihong & Saunders, David & Weng, Chengguo, 2023. "Two-phase selection of representative contracts for valuation of large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 293-309.
    12. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    13. Quan Zhiyu & Valdez Emiliano A., 2018. "Predictive analytics of insurance claims using multivariate decision trees," Dependence Modeling, De Gruyter, vol. 6(1), pages 377-407, December.
    14. Yann Braouezec, 2015. "Public versus Private Insurance System with (and without) Transaction Costs: Optimal Segmentation Policy of an Informed monopolistPublic versus Private Insurance System with (and without) Transaction ," Working Papers 2013-ECO-23, IESEG School of Management, revised May 2014.
    15. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    16. Zuleyka Díaz Martínez & José Fernández Menéndez & Luis Javier García Villalba, 2023. "Tariff Analysis in Automobile Insurance: Is It Time to Switch from Generalized Linear Models to Generalized Additive Models?," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    17. Joseph A. Cazier & Benjamin B. M. Shao & Robert D. St. Louis, 2007. "Sharing information and building trust through value congruence," Information Systems Frontiers, Springer, vol. 9(5), pages 515-529, November.
    18. Cheng, Junjun & Chen, Bo & Huang, Zihang, 2023. "Collective-based ad transparency in targeted hotel advertising: Consumers’ regulatory focus underlying the crowd safety effect," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    19. Ahmed Ibrahim Alzahrani & T. Ramayah & Nalini Suppiah & Osama Alfarraj & Nasser Alalwan, 2020. "Modeling Blog Usage From a Developing Country Perspective Using Structural Equation Modeling (SEM)," SAGE Open, , vol. 10(3), pages 21582440209, July.
    20. Hwang, ShinYoung & Kim Seongcheol, 2017. "What triggers the use of mIM service provider’s sequel O2O service extensions?," 14th ITS Asia-Pacific Regional Conference, Kyoto 2017: Mapping ICT into Transformation for the Next Information Society 168494, International Telecommunications Society (ITS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:12:p:230-:d:990714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.