Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
- repec:cup:astinb:v:49:y:2019:i:01:p:1-3_00 is not listed on IDEAS
- Florian Pargent & Florian Pfisterer & Janek Thomas & Bernd Bischl, 2022. "Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features," Computational Statistics, Springer, vol. 37(5), pages 2671-2692, November.
- Roel Henckaerts & Marie-Pier Côté & Katrien Antonio & Roel Verbelen, 2021. "Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 255-285, April.
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 2," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 230-258, July.
- Kevin Kuo & Ronald Richman, 2021. "Embeddings and Attention in Predictive Modeling," Papers 2104.03545, arXiv.org.
- Richman, Ronald & Wüthrich, Mario V., 2021. "A neural network extension of the Lee–Carter model to multiple populations," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 346-366, July.
- Al-Mudafer, Muhammed Taher & Avanzi, Benjamin & Taylor, Greg & Wong, Bernard, 2022. "Stochastic loss reserving with mixture density neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 144-174.
- Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 1," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 207-229, July.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
- Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Bram van Os, 2023. "Information-Theoretic Time-Varying Density Modeling," Tinbergen Institute Discussion Papers 23-037/III, Tinbergen Institute.
- Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Jun 2024.
- Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
- David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin, 2021.
"Variational Bayes in State Space Models: Inferential and Predictive Accuracy,"
Papers
2106.12262, arXiv.org, revised Feb 2022.
- David T. Frazier & Gael M. Martin & Ruben Loaiza-Maya, 2022. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Monash Econometrics and Business Statistics Working Papers 1/22, Monash University, Department of Econometrics and Business Statistics.
- Jamotton, Charlotte & Hainaut, Donatien, 2024. "Latent Dirichlet Allocation for structured insurance data," LIDAM Discussion Papers ISBA 2024008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Benjamin Avanzi & Eric Dong & Patrick J. Laub & Bernard Wong, 2024. "Distributional Refinement Network: Distributional Forecasting via Deep Learning," Papers 2406.00998, arXiv.org.
- Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.
- David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin & Bonsoo Koo, 2021.
"Loss-Based Variational Bayes Prediction,"
Monash Econometrics and Business Statistics Working Papers
8/21, Monash University, Department of Econometrics and Business Statistics.
- David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin & Bonsoo Koo, 2021. "Loss-Based Variational Bayes Prediction," Papers 2104.14054, arXiv.org, revised May 2022.
- Freek Holvoet & Katrien Antonio & Roel Henckaerts, 2023. "Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff," Papers 2310.12671, arXiv.org, revised Aug 2024.
- Chaya Weerasinghe & Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2023. "ABC-based Forecasting in State Space Models," Monash Econometrics and Business Statistics Working Papers 12/23, Monash University, Department of Econometrics and Business Statistics.
- Patrick Toman & Nalini Ravishanker & Nathan Lally & Sanguthevar Rajasekaran, 2023. "Latent Autoregressive Student- t Prior Process Models to Assess Impact of Interventions in Time Series," Future Internet, MDPI, vol. 16(1), pages 1-17, December.
- Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-02-27 (Big Data)
- NEP-CMP-2023-02-27 (Computational Economics)
- NEP-ECM-2023-02-27 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.12710. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.