IDEAS home Printed from https://ideas.repec.org/a/kap/jtecht/v45y2020i2d10.1007_s10961-018-9709-x.html
   My bibliography  Save this article

Do firms profit from involving academics when developing technology?

Author

Listed:
  • Hanne Peeters

    (KU Leuven)

  • Julie Callaert

    (KU Leuven)

  • Bart Looy

    (KU Leuven)

Abstract

In this study, we analyze the contribution of academics to corporate technology development. Firm patents that involve (Flemish) academic inventors are contrasted with patents developed in-house. Two distinctive patterns emerge. First, firms involve academics relatively more often when exploring new technological fields (novel to the firm). At the same time, the majority of inventions in which academics become involved still reside in domains familiar to the firm (exploitation). Second, the impact of academic involvement differs significantly depending on whether contributions are situated in familiar or novel domains. When working in domains in which the firm has previous experience, academic involvement leads on average to fewer subsequent inventions (by the firm), whereas the reverse pattern occurs when firms engage academics in exploring new domains. These seemingly opposing patterns can be reconciled by taking into account familiarity with the underlying domain: academic involvement results in the creation of new options when exploring new domains while the benefits of engaging academics in exploitation reside mainly in eliminating (real) options.

Suggested Citation

  • Hanne Peeters & Julie Callaert & Bart Looy, 2020. "Do firms profit from involving academics when developing technology?," The Journal of Technology Transfer, Springer, vol. 45(2), pages 494-521, April.
  • Handle: RePEc:kap:jtecht:v:45:y:2020:i:2:d:10.1007_s10961-018-9709-x
    DOI: 10.1007/s10961-018-9709-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10961-018-9709-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10961-018-9709-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rebecca Henderson & Iain Cockburn, 1996. "Scale, Scope, and Spillovers: The Determinants of Research Productivity in Drug Discovery," RAND Journal of Economics, The RAND Corporation, vol. 27(1), pages 32-59, Spring.
    2. Tijssen, Robert J. W., 2002. "Science dependence of technologies: evidence from inventions and their inventors," Research Policy, Elsevier, vol. 31(4), pages 509-526, May.
    3. Iain M. Cockburn & Rebecca M. Henderson, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    4. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    5. Nicola Lacetera, 2009. "Different Missions and Commitment Power in R&D Organizations: Theory and Evidence on Industry-University Alliances," Organization Science, INFORMS, vol. 20(3), pages 565-582, June.
    6. Jeff S. Armstrong & Michael R. Darby & Lynne G. Zucker, 2003. "Commercializing knowledge: university science, knowledge capture and firm performance in biotechnology," Proceedings, Federal Reserve Bank of Dallas, issue Sep, pages 149-170.
    7. David J. TEECE, 2008. "Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy," World Scientific Book Chapters, in: The Transfer And Licensing Of Know-How And Intellectual Property Understanding the Multinational Enterprise in the Modern World, chapter 5, pages 67-87, World Scientific Publishing Co. Pte. Ltd..
    8. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2009. "Why Challenge the Ivory Tower? New Evidence on the Basicness of Academic Patents," Kyklos, Wiley Blackwell, vol. 62(4), pages 488-499, November.
    9. Francesco Lissoni & Patrick Llerena & Maureen McKelvey & Bulat Sanditov, 2008. "Academic patenting in Europe: new evidence from the KEINS database," Research Evaluation, Oxford University Press, vol. 17(2), pages 87-102, June.
    10. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    11. Nooteboom, Bart & Van Haverbeke, Wim & Duysters, Geert & Gilsing, Victor & van den Oord, Ad, 2007. "Optimal cognitive distance and absorptive capacity," Research Policy, Elsevier, vol. 36(7), pages 1016-1034, September.
    12. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    13. Ron Sanchez, 1995. "Strategic flexibility in product competition," Strategic Management Journal, Wiley Blackwell, vol. 16(S1), pages 135-159.
    14. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    15. A. Varga, 2006. "Spatial Knowledge Spillovers and University Research: Evidence from Austria," Springer Books, in: Innovation, Networks, and Knowledge Spillovers, chapter 10, pages 211-232, Springer.
    16. Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006. "Academic vs. industry patenting: an in-depth analysis of what determines patent value," Working Papers CEB 05-008.RS, ULB -- Universite Libre de Bruxelles.
    17. Bishop, Kate & D'Este, Pablo & Neely, Andy, 2011. "Gaining from interactions with universities: Multiple methods for nurturing absorptive capacity," Research Policy, Elsevier, vol. 40(1), pages 30-40, February.
    18. Gustavo Crespi & Aldo Geuna & Onder Nomaler & Bart Verspagen, 2010. "University IPRs and knowledge transfer: is university ownership more efficient?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 19(7), pages 627-648.
    19. Grimpe, Christoph & Sofka, Wolfgang, 2009. "Search patterns and absorptive capacity: Low- and high-technology sectors in European countries," Research Policy, Elsevier, vol. 38(3), pages 495-506, April.
    20. Luc Anselin & Attila Varga & Zoltan Acs, 2008. "Local Geographic Spillovers Between University Research and High Technology Innovations," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 9, pages 95-121, Edward Elgar Publishing.
    21. Autant-Bernard, Corinne, 2001. "Science and knowledge flows: evidence from the French case," Research Policy, Elsevier, vol. 30(7), pages 1069-1078, August.
    22. Jaffe, Adam B, 1989. "Real Effects of Academic Research," American Economic Review, American Economic Association, vol. 79(5), pages 957-970, December.
    23. Li, Guan-Cheng & Lai, Ronald & D’Amour, Alexander & Doolin, David M. & Sun, Ye & Torvik, Vetle I. & Yu, Amy Z. & Fleming, Lee, 2014. "Disambiguation and co-authorship networks of the U.S. patent inventor database (1975–2010)," Research Policy, Elsevier, vol. 43(6), pages 941-955.
    24. Laursen, Keld & Salter, Ammon, 2004. "Searching high and low: what types of firms use universities as a source of innovation?," Research Policy, Elsevier, vol. 33(8), pages 1201-1215, October.
    25. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    26. Daniel A. Levinthal & James G. March, 1993. "The myopia of learning," Strategic Management Journal, Wiley Blackwell, vol. 14(S2), pages 95-112, December.
    27. repec:bla:jindec:v:46:y:1998:i:2:p:157-82 is not listed on IDEAS
    28. Debackere, Koenraad & Veugelers, Reinhilde, 2005. "The role of academic technology transfer organizations in improving industry science links," Research Policy, Elsevier, vol. 34(3), pages 321-342, April.
    29. Saragossi, Sarina & van Pottelsberghe de la Potterie, Bruno, 2003. "What Patent Data Reveal about Universities: The Case of Belgium," The Journal of Technology Transfer, Springer, vol. 28(1), pages 47-51, January.
    30. Uriel Stettner & Dovev Lavie, 2014. "Ambidexterity under scrutiny: Exploration and exploitation via internal organization, alliances, and acquisitions," Strategic Management Journal, Wiley Blackwell, vol. 35(13), pages 1903-1929, December.
    31. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    32. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
    33. Christopher F Baum, 2006. "An Introduction to Modern Econometrics using Stata," Stata Press books, StataCorp LP, number imeus.
    34. John Hagedoorn & Geert Duysters, 2002. "External Sources of Innovative Capabilities: The Preferences for Strategic Alliances or Mergers and Acquisitions," Journal of Management Studies, Wiley Blackwell, vol. 39(2), pages 167-188, March.
    35. Audretsch, David B. & Bozeman, Barry & Combs, Kathryn L. & Feldman, Maryann & Link, Albert N. & Siegel, Donald S. & Stephan, Paula, 2002. "The Economics of Science and Technology," The Journal of Technology Transfer, Springer, vol. 27(2), pages 155-203, April.
    36. Peter Armstrong, 2002. "The politics of management science: an inaugural lecture," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 3(1), pages 2-18.
    37. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    38. Köhler, Christian & Sofka, Wolfgang & Grimpe, Christoph, 2012. "Selective search, sectoral patterns, and the impact on product innovation performance," Research Policy, Elsevier, vol. 41(8), pages 1344-1356.
    39. Fabrizio, Kira R., 2009. "Absorptive capacity and the search for innovation," Research Policy, Elsevier, vol. 38(2), pages 255-267, March.
    40. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    41. Sharon Belenzon, 2012. "Cumulative Innovation and Market Value: Evidence from Patent Citations," Economic Journal, Royal Economic Society, vol. 122(559), pages 265-285, March.
    42. Mansfield, Edwin, 1995. "Academic Research Underlying Industrial Innovations:," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 55-65, February.
    43. Bruno Cassiman & Reinhilde Veugelers & Pluvia Zuniga, 2008. "In search of performance effects of (in)direct industry science links," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(4), pages 611-646, August.
    44. Tomas Del Barrio-Castro & Jose Garcia-Quevedo, 2005. "Effects of university research on the geography of innovation," Regional Studies, Taylor & Francis Journals, vol. 39(9), pages 1217-1229.
    45. Giovanni Dosi, 2000. "Sources, Procedures, and Microeconomic Effects of Innovation," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 2, pages 63-114, Edward Elgar Publishing.
    46. Blind, Knut & Grupp, Hariolf, 1999. "Interdependencies between the science and technology infrastructure and innovation activities in German regions: empirical findings and policy consequences," Research Policy, Elsevier, vol. 28(5), pages 451-468, June.
    47. Dietmar Harhoff & Stefan Wagner, 2009. "The Duration of Patent Examination at the European Patent Office," Management Science, INFORMS, vol. 55(12), pages 1969-1984, December.
    48. John Hagedoorn, 1993. "Understanding the rationale of strategic technology partnering: Interorganizational modes of cooperation and sectoral differences," Strategic Management Journal, Wiley Blackwell, vol. 14(5), pages 371-385, July.
    49. Julie Callaert & Mariette Du Plessis & Bart van Looy & Koenraad Debackere, 2013. "The Impact of Academic Technology: Do Modes of Involvement Matter? The Flemish Case," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 456-472, July.
    50. Roberta Piergiovanni & Enrico Santarelli, 2001. "Patents and the Geographic Localization of R&D Spillovers in French Manufacturing," Regional Studies, Taylor & Francis Journals, vol. 35(8), pages 697-702.
    51. Daniel Ljungberg & Evangelos Bourelos & Maureen McKelvey, 2013. "Academic Inventors, Technological Profiles and Patent Value: An Analysis of Academic Patents Owned by Swedish-Based Firms," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 473-487, July.
    52. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    53. Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
    54. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
    55. Bruno Cassiman & Reinhilde Veugelers, 2006. "In Search of Complementarity in Innovation Strategy: Internal R& D and External Knowledge Acquisition," Management Science, INFORMS, vol. 52(1), pages 68-82, January.
    56. Adams, James D, 1990. "Fundamental Stocks of Knowledge and Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 673-702, August.
    57. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    58. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2011. "Commercializing academic research: the quality of faculty patenting," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 20(5), pages 1403-1437, October.
    59. Iacus, Stefano M. & King, Gary & Porro, Giuseppe, 2012. "Causal Inference without Balance Checking: Coarsened Exact Matching," Political Analysis, Cambridge University Press, vol. 20(1), pages 1-24, January.
    60. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    61. Daniel Ljungberg & Maureen McKelvey, 2012. "What Characterizes Firms' Academic Patents? Academic Involvement in Industrial Inventions in Sweden," Industry and Innovation, Taylor & Francis Journals, vol. 19(7), pages 585-606, October.
    62. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    63. Sapsalis, Eleftherios & van Pottelsberghe de la Potterie, Bruno & Navon, Ran, 2006. "Academic versus industry patenting: An in-depth analysis of what determines patent value," Research Policy, Elsevier, vol. 35(10), pages 1631-1645, December.
    64. Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Cerulli & Giovanni Marin & Eleonora Pierucci & Bianca Potì, 2022. "Do company-owned academic patents influence firm performance? Evidence from the Italian industry," The Journal of Technology Transfer, Springer, vol. 47(1), pages 242-269, February.
    2. Anckaert, Paul-Emmanuel & Uhlbach, Wolf-Hendrik, 2024. "Migration and innovation: How foreign R&D hires shape firm-level exploration in their host country," Other publications TiSEM aa9ac9d1-4531-43a1-bbb3-2, Tilburg University, School of Economics and Management.
    3. Annamaria Demarinis Loiotile & Francesco De Nicolò & Adriana Agrimi & Loredana Bellantuono & Marianna La Rocca & Alfonso Monaco & Ester Pantaleo & Sabina Tangaro & Nicola Amoroso & Roberto Bellotti, 2022. "Best Practices in Knowledge Transfer: Insights from Top Universities," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    4. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012. "The nexus between science and industry: evidence from faculty inventions," The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
    2. Veugelers, Reinhilde & Cassiman, Bruno & Arts, Sam, 2012. "Mind the gap: capturing value from basic research: boundary crossing inventors and partnerships," CEPR Discussion Papers 9215, C.E.P.R. Discussion Papers.
    3. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    4. Alessandra Scandura, 2019. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1029-1069, August.
    5. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    6. Fassio, Claudio & Geuna, Aldo & Rossi, Federica, 2014. "The Contribution of Academic Knowledge to the Value of Industry Inventions: Micro level evidence from patent inventors," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201408, University of Turin.
    7. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    8. Giovanni Cerulli & Giovanni Marin & Eleonora Pierucci & Bianca Potì, 2022. "Do company-owned academic patents influence firm performance? Evidence from the Italian industry," The Journal of Technology Transfer, Springer, vol. 47(1), pages 242-269, February.
    9. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    10. Acosta, Manuel & Coronado, Daniel & Martínez, M. Ángeles, 2012. "Spatial differences in the quality of university patenting: Do regions matter?," Research Policy, Elsevier, vol. 41(4), pages 692-703.
    11. Alessandra Scandura, 2013. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," ERSA conference papers ersa13p128, European Regional Science Association.
    12. Dornbusch, Friedrich & Neuhäusler, Peter, 2015. "Composition of inventor teams and technological progress – The role of collaboration between academia and industry," Research Policy, Elsevier, vol. 44(7), pages 1360-1375.
    13. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    14. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    15. Cassiman, Bruno & Veugelers, Reinhilde & Arts, Sam, 2018. "Mind the gap: Capturing value from basic research through combining mobile inventors and partnerships," Research Policy, Elsevier, vol. 47(9), pages 1811-1824.
    16. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    17. Seh-Hyun Yoo & Chang-Yang Lee, 2023. "Technological diversification, technology portfolio properties, and R&D productivity," The Journal of Technology Transfer, Springer, vol. 48(6), pages 2074-2105, December.
    18. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    19. Jong, Simcha & Slavova, Kremena, 2014. "When publications lead to products: The open science conundrum in new product development," Research Policy, Elsevier, vol. 43(4), pages 645-654.
    20. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.

    More about this item

    Keywords

    Corporate R&D; Academic inventors; Technology trajectories;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jtecht:v:45:y:2020:i:2:d:10.1007_s10961-018-9709-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.