Stochastic technology life cycle analysis using multiple patent indicators
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2016.01.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jose M. Vicente-Gomila & Anna Palli & Begoña Calle & Miguel A. Artacho & Sara Jimenez, 2017. "Discovering shifts in competitive strategies in probiotics, accelerated with TechMining," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1907-1923, June.
- Ryosuke L. Ohniwa & Aiko Hibino, 2019. "Generating process of emerging topics in the life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1549-1561, December.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Myoungjae Choi & Sun-Hi Yoo & Jongtaik Lee & Jeongsub Choi & Byunghoon Kim, 2022. "A modified gamma/Gompertz/NBD model for estimating technology lifetime," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5731-5751, October.
- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Perruchas, François & Consoli, Davide & Barbieri, Nicolò, 2020.
"Specialisation, diversification and the ladder of green technology development,"
Research Policy, Elsevier, vol. 49(3).
- François Perruchas & Davide Consoli & Nicolò Barbieri, 2019. "Specialisation, diversification and the ladder of green technology development," SPRU Working Paper Series 2019-07, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Lin, Deming & Liu, Wenbin & Guo, Yinxin & Meyer, Martin, 2021. "Using technological entropy to identify technology life cycle," Journal of Informetrics, Elsevier, vol. 15(2).
- Kim, Juram & Lee, Gyumin & Lee, Seungbin & Lee, Changyong, 2022. "Towards expert–machine collaborations for technology valuation: An interpretable machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
- Nicoló Barbieri & François Perruchas & Davide Consoli, 2020.
"Specialization, Diversification, and Environmental Technology Life Cycle,"
Economic Geography, Taylor & Francis Journals, vol. 96(2), pages 161-186, March.
- Nicoló Barbieri & François Perruchas & Davide Consoli, 2018. "Specialization, diversification and environmental technology life-cycle," Papers in Evolutionary Economic Geography (PEEG) 1838, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2018.
- Fredström, Ashkan & Wincent, Joakim & Sjödin, David & Oghazi, Pejvak & Parida, Vinit, 2021. "Tracking innovation diffusion: AI analysis of large-scale patent data towards an agenda for further research," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
- Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
- Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Chung, Park & Sohn, So Young, 2020. "Early detection of valuable patents using a deep learning model: Case of semiconductor industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
- Jeon, Daeseong & Ahn, Joon Mo & Kim, Juram & Lee, Changyong, 2022. "A doc2vec and local outlier factor approach to measuring the novelty of patents," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Yoonjung An & Mintak Han & Yongtae Park, 2017. "Identifying dynamic knowledge flow patterns of business method patents with a hidden Markov model," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 783-802, November.
- Juram Kim & Changyong Lee, 2017. "Stochastic service life cycle analysis using customer reviews," The Service Industries Journal, Taylor & Francis Journals, vol. 37(5-6), pages 296-316, April.
- Wang, Yu-Hui & Hsieh, Chia-Ching, 2018. "Explore technology innovation and intelligence for IoT (Internet of Things) based eyewear technology," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 281-290.
- Pantano, Eleonora & Priporas, Constantinos-Vasilios & Stylos, Nikolaos, 2018. "Knowledge Push Curve (KPC) in retailing: Evidence from patented innovations analysis affecting retailers' competitiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 44(C), pages 150-160.
- Jeon, Daeseong & Lee, Junyoup & Ahn, Joon Mo & Lee, Changyong, 2023. "Measuring the novelty of scientific publications: A fastText and local outlier factor approach," Journal of Informetrics, Elsevier, vol. 17(4).
More about this item
Keywords
Stochastic technology life cycle analysis; Technology's progression; Hidden Markov model; Multiple patent indicators; Technology intelligence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:106:y:2016:i:c:p:53-64. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.