IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i1d10.1007_s11192-020-03731-y.html
   My bibliography  Save this article

Recommendation system for technology convergence opportunities based on self-supervised representation learning

Author

Listed:
  • Jungpyo Lee

    (Yonsei University)

  • So Young Sohn

    (Yonsei University)

Abstract

We show how a deep neural network can be designed to learn meaningful representations from high-dimensional and heterogeneous categorical features in patent data using self-supervised learning. Based on each firm’s technology portfolio and each patent’s co-classification information, we propose a novel recommendation system for firms seeking new convergence opportunities through representations of convergence items and firms. The results of this work are expected to recommend convergence opportunities in multiple technology fields by considering the target firm’s potential preference. First, we create a technology portfolio consisting of a set of patents owned by each firm. Then, we train a neural network to extract latent representations of firms and technology convergence items. Despite a lack of indicators related to a firm’s latent preference for a convergence item, a self-supervised neural network can capture the similarity with semantic information of firm’s latent preference that is implicitly present in patent’s co-classification information in each firm’s technology portfolio. We then calculate the similarity between the vector of a target firm and convergence items for recommendation. The top N similar convergence items that have the highest scores are recommended as the new convergence items for the target firm. We apply our framework to the dataset of patents granted by the United States Patent and Trademark Office between 2011 and 2015. The results indicate that the recent development in theories and empirical studies of deep representation learning can shed new light on extracting valuable information from the structured part of patent data.

Suggested Citation

  • Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:1:d:10.1007_s11192-020-03731-y
    DOI: 10.1007/s11192-020-03731-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03731-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03731-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Janghyeok & Park, Hyunseok & Seo, Wonchul & Lee, Jae-Min & Coh, Byoung-youl & Kim, Jonghwa, 2015. "Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 153-167.
    2. Yongho Lee & So Young Kim & Inseok Song & Yongtae Park & Juneseuk Shin, 2014. "Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 227-244, July.
    3. Janghyeok Yoon & Hyunseok Park & Kwangsoo Kim, 2013. "Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 313-331, January.
    4. Park, Inchae & Yoon, Byungun, 2018. "Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network," Journal of Informetrics, Elsevier, vol. 12(4), pages 1199-1222.
    5. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    6. Rosenberg, Nathan, 1963. "Technological Change in the Machine Tool Industry, 1840–1910," The Journal of Economic History, Cambridge University Press, vol. 23(4), pages 414-443, December.
    7. Gambardella, Alfonso & Torrisi, Salvatore, 1998. "Does technological convergence imply convergence in markets? Evidence from the electronics industry," Research Policy, Elsevier, vol. 27(5), pages 445-463, September.
    8. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "The vulnerability of patent value determinants," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(3), pages 283-308.
    9. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    10. Martin, Ben R. & Nightingale, Paul & Yegros-Yegros, Alfredo, 2012. "Science and technology studies: Exploring the knowledge base," Research Policy, Elsevier, vol. 41(7), pages 1182-1204.
    11. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    12. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    13. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    14. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    15. Lee, Mingook & Lee, Sungjoo, 2017. "Identifying new business opportunities from competitor intelligence: An integrated use of patent and trademark databases," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 170-183.
    16. An, Jaehyeong & Kim, Kyuwoong & Mortara, Letizia & Lee, Sungjoo, 2018. "Deriving technology intelligence from patents: Preposition-based semantic analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 217-236.
    17. Zhang, Yi & Shang, Lining & Huang, Lu & Porter, Alan L. & Zhang, Guangquan & Lu, Jie & Zhu, Donghua, 2016. "A hybrid similarity measure method for patent portfolio analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1108-1130.
    18. Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
    19. Kim, Dong-hyu & Lee, Heejin & Kwak, Jooyoung, 2017. "Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: An investigation of the M2M/IoT patent network," Research Policy, Elsevier, vol. 46(7), pages 1234-1254.
    20. Han, Eun Jin & Sohn, So Young, 2016. "Technological convergence in standards for information and communication technologies," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 1-10.
    21. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    22. Kim, Namil & Lee, Hyeokseong & Kim, Wonjoon & Lee, Hyunjong & Suh, Jong Hwan, 2015. "Dynamic patterns of industry convergence: Evidence from a large amount of unstructured data," Research Policy, Elsevier, vol. 44(9), pages 1734-1748.
    23. Hans-Gerd Ridder, 2017. "The theory contribution of case study research designs," Business Research, Springer;German Academic Association for Business Research, vol. 10(2), pages 281-305, October.
    24. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    25. Chung, Park & Sohn, So Young, 2020. "Early detection of valuable patents using a deep learning model: Case of semiconductor industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    26. Seo, Wonchul & Yoon, Janghyeok & Park, Hyunseok & Coh, Byoung-youl & Lee, Jae-Min & Kwon, Oh-Jin, 2016. "Product opportunity identification based on internal capabilities using text mining and association rule mining," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 94-104.
    27. Kose, Toshihiro & Sakata, Ichiro, 2019. "Identifying technology convergence in the field of robotics research," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 751-766.
    28. Ola Olsson, 2005. "Technological Opportunity and Growth," Journal of Economic Growth, Springer, vol. 10(1), pages 31-53, January.
    29. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    30. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    31. Kim, Juram & Kim, Seungho & Lee, Changyong, 2019. "Anticipating technological convergence: Link prediction using Wikipedia hyperlinks," Technovation, Elsevier, vol. 79(C), pages 25-34.
    32. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    33. Inyoung Hwang, 2020. "The effect of collaborative innovation on ICT-based technological convergence: A patent-based analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-20, February.
    34. Byunghoon Kim & Gianluca Gazzola & Jae-Min Lee & Dohyun Kim & Kanghoe Kim & Myong K. Jeong, 2014. "Inter-cluster connectivity analysis for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1811-1825, March.
    35. Park, Chung & Lee, Jungpyo & Sohn, So Young, 2019. "Recommendation of feeder bus routes using neural network embedding-based optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 329-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    4. Emmanuel Ekene Okere & Vipin Balyan, 2024. "Advances in Blockchain-Based Internet of Vehicles Application: Prospect for Machine Learning Integration," Future Internet, MDPI, vol. 16(12), pages 1-43, December.
    5. Haochuan Cui & Tiewei Li & Cheng-Jun Wang, 2023. "Climbing up the ladder of abstraction: how to span the boundaries of knowledge space in the online knowledge market?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    6. Zhaobin Liu & Yongxiang Zhang & Weiwei Deng & Jian Ma & Xia Fan, 2024. "A deep learning method for recommending university patents to industrial clusters by common technological needs mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3089-3113, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    3. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    4. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    5. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    6. Jong Wook Lee & So Young Sohn, 2021. "Patent data based search framework for IT R&D employees for convergence technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5687-5705, July.
    7. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    8. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    9. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    10. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    11. ZHU Chen & MOTOHASHI Kazuyuki, 2022. "Government R&D spending as a driving force of technology convergence," Discussion papers 22030, Research Institute of Economy, Trade and Industry (RIETI).
    12. Sick, Nathalie & Preschitschek, Nina & Leker, Jens & Bröring, Stefanie, 2019. "A new framework to assess industry convergence in high technology environments," Technovation, Elsevier, vol. 84, pages 48-58.
    13. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    14. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    15. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    16. Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
    17. Jinho Choi & Yong Sik Chang, 2020. "Development of a New Methodology to Identity Promising Technology Areas Using M&A Information," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    18. Seol, Youngjin & Lee, Seunghyun & Kim, Cheolhan & Yoon, Janghyeok & Choi, Jaewoong, 2023. "Towards firm-specific technology opportunities: A rule-based machine learning approach to technology portfolio analysis," Journal of Informetrics, Elsevier, vol. 17(4).
    19. Zhu, Chen & Motohashi, Kazuyuki, 2022. "Identifying the technology convergence using patent text information: A graph convolutional networks (GCN)-based approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    20. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).

    More about this item

    Keywords

    Deep representation learning; Recommendation system; Technology convergence; Technology opportunity discovery; Self-supervised learning;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:1:d:10.1007_s11192-020-03731-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.