IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v13y2019i2p485-499.html
   My bibliography  Save this article

Predicting citation counts based on deep neural network learning techniques

Author

Listed:
  • Abrishami, Ali
  • Aliakbary, Sadegh

Abstract

With the growing number of published scientific papers world-wide, the need to evaluation and quality assessment methods for research papers is increasing. Scientific fields such as scientometrics, informetrics, and bibliometrics establish quantified analysis methods and measurements for evaluating scientific papers. In this area, an important problem is to predict the future influence of a published paper. Particularly, early discrimination between influential papers and insignificant papers may find important applications. In this regard, one of the most important metrics is the number of citations to the paper, since this metric is widely utilized in the evaluation of scientific publications and moreover, it serves as the basis for many other metrics such as h-index. In this paper, we propose a novel method for predicting long-term citations of a paper based on the number of its citations in the first few years after publication. In order to train a citation count prediction model, we employed artificial neural network which is a powerful machine learning tool with recently growing applications in many domains including image and text processing. The empirical experiments show that our proposed method outperforms state-of-the-art methods with respect to the prediction accuracy in both yearly and total prediction of the number of citations.

Suggested Citation

  • Abrishami, Ali & Aliakbary, Sadegh, 2019. "Predicting citation counts based on deep neural network learning techniques," Journal of Informetrics, Elsevier, vol. 13(2), pages 485-499.
  • Handle: RePEc:eee:infome:v:13:y:2019:i:2:p:485-499
    DOI: 10.1016/j.joi.2019.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157718303821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2019.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:13:y:2019:i:2:p:485-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.