IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/27598.html
   My bibliography  Save this paper

Patent Quality: Towards a Systematic Framework for Analysis and Measurement

Author

Listed:
  • Kyle W. Higham
  • Gaétan de Rassenfosse
  • Adam B. Jaffe

Abstract

The 'quality' of novel technological innovations is extremely variable, and the ability to measure innovation quality is essential to sensible, evidence-based policy. Patents, an often vital precursor to a commercialised innovation, share this heterogeneous quality distribution. A pertinent question then arises: How should we define and measure patent quality? Accepting that different stakeholders have different views of this concept, we take a multi-dimensional view of patent quality in this work. We first test the consistency of popular post-grant outcomes that are often used as patent quality measures. Finding these measures to be generally inconsistent, we then use a raft of patent indicators that are defined at the time of grant to dissect the characteristics associated with different post-grant outcomes. We find broad disagreement in the relative importance of individual characteristics between outcomes and, further, significant variation of the same across technologies within outcomes. We conclude that measurement of patent quality is highly sensitive to both stakeholder viewpoint and technology type. Our findings bear implications for scholarly research using patent data as well as for policy discussions about patent quality.

Suggested Citation

  • Kyle W. Higham & Gaétan de Rassenfosse & Adam B. Jaffe, 2020. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," NBER Working Papers 27598, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:27598
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w27598.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lanjouw, Jean O & Schankerman, Mark, 2001. "Characteristics of Patent Litigation: A Window on Competition," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 129-151, Spring.
    2. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
    3. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2018. "Erratum to: Time to patent at the USPTO: the case of emerging entrepreneurial firms," The Journal of Technology Transfer, Springer, vol. 43(4), pages 1107-1119, August.
    4. Zhang, Gupeng & Xiong, Libin & Duan, Hongbo & Huang, Dujuan, 2020. "Obtaining certainty vs. creating uncertainty: Does firms’ patent filing strategy work as expected?," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    5. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "The vulnerability of patent value determinants," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(3), pages 283-308.
    6. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "Filing strategies and patent value," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(6), pages 539-561, February.
    7. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    8. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
    9. repec:fth:harver:1473 is not listed on IDEAS
    10. Josh Feng & Xavier Jaravel, 2020. "Crafting Intellectual Property Rights: Implications for Patent Assertion Entities, Litigation, and Innovation," American Economic Journal: Applied Economics, American Economic Association, vol. 12(1), pages 140-181, January.
    11. Bryan, Kevin A. & Ozcan, Yasin & Sampat, Bhaven, 2020. "In-text patent citations: A user's guide," Research Policy, Elsevier, vol. 49(4).
    12. Galasso, Alberto & Schankerman, Mark, 2015. "Patents and cumulative innovation: causal evidence from the courts," LSE Research Online Documents on Economics 61614, London School of Economics and Political Science, LSE Library.
    13. Leonid Kogan & Dimitris Papanikolaou & Amit Seru & Noah Stoffman, 2017. "Technological Innovation, Resource Allocation, and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 665-712.
    14. Higham, K.W. & Governale, M. & Jaffe, A.B. & Zülicke, U., 2017. "Unraveling the dynamics of growth, aging and inflation for citations to scientific articles from specific research fields," Journal of Informetrics, Elsevier, vol. 11(4), pages 1190-1200.
    15. Gaetan de Rassenfosse & Kyle Higham, 2019. "Decentralising the Patent System," Working Papers 6, Chair of Science, Technology, and Innovation Policy.
    16. Marco, Alan C. & Sarnoff, Joshua D. & deGrazia, Charles A.W., 2019. "Patent claims and patent scope," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    17. Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006. "Academic vs. industry patenting: an in-depth analysis of what determines patent value," ULB Institutional Repository 2013/6197, ULB -- Universite Libre de Bruxelles.
    18. Eleftherios Sapsalis & Bruno van Pottelsberghe de la Potterie, 2007. "The Institutional Sources Of Knowledge And The Value Of Academic Patents," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 16(2), pages 139-157.
    19. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    20. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    21. Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2018. "Text matching to measure patent similarity," Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 62-84, January.
    22. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    23. Petra Moser & Joerg Ohmstedt & Paul W. Rhode, 2018. "Patent Citations—An Analysis of Quality Differences and Citing Practices in Hybrid Corn," Management Science, INFORMS, vol. 64(4), pages 1926-1940, April.
    24. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    25. Gaétan de Rassenfosse & Adam B. Jaffe, 2018. "Are patent fees effective at weeding out low‐quality patents?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 27(1), pages 134-148, March.
    26. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    27. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    28. Jean O. Lanjouw & Ariel Pakes & Jonathan Putnam, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    29. Tom Magerman & Bart Looy & Xiaoyan Song, 2010. "Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 289-306, February.
    30. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    31. Mejer, Malwina & van Pottelsberghe de la Potterie, Bruno, 2011. "Patent backlogs at USPTO and EPO: Systemic failure vs deliberate delays," World Patent Information, Elsevier, vol. 33(2), pages 122-127, June.
    32. Gaétan de Rassenfosse & William E. Griffiths & Adam B. Jaffe & Elizabeth Webster, 2021. "Low-Quality Patents in the Eye of the Beholder: Evidence from Multiple Examiners," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 37(3), pages 607-636.
    33. François Lafond & Daniel Kim, 2019. "Long-run dynamics of the U.S. patent classification system," Journal of Evolutionary Economics, Springer, vol. 29(2), pages 631-664, April.
    34. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    35. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
    36. Pakes, Ariel & Griliches, Zvi, 1980. "Patents and R&D at the firm level: A first report," Economics Letters, Elsevier, vol. 5(4), pages 377-381.
    37. Harhoff, Dietmar & Gambardella, Alfonso & Verspagen, Bart, 2008. "The Value of European Patents," CEPR Discussion Papers 6848, C.E.P.R. Discussion Papers.
    38. Pierre Régibeau & Katharine Rockett, 2010. "Innovation Cycles And Learning At The Patent Office: Does The Early Patent Get The Delay?," Journal of Industrial Economics, Wiley Blackwell, vol. 58(2), pages 222-246, June.
    39. Elizabeth Webster & Paul H. Jensen, 2011. "Do Patents Matter for Commercialization?," Journal of Law and Economics, University of Chicago Press, vol. 54(2), pages 431-453.
    40. Ryan Whalen & Alina Lungeanu & Leslie DeChurch & Noshir Contractor, 2020. "Patent Similarity Data and Innovation Metrics," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(3), pages 615-639, September.
    41. Falk Nathan & Train Kenneth, 2017. "Patent Valuation with Forecasts of Forward Citations," Journal of Business Valuation and Economic Loss Analysis, De Gruyter, vol. 12(1), pages 101-121, February.
    42. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    43. Bessen, James, 2008. "The value of U.S. patents by owner and patent characteristics," Research Policy, Elsevier, vol. 37(5), pages 932-945, June.
    44. Ariel Pakes & Mark Schankerman, 1984. "The Rate of Obsolescence of Patents, Research Gestation Lags, and the Private Rate of Return to Research Resources," NBER Chapters, in: R&D, Patents, and Productivity, pages 73-88, National Bureau of Economic Research, Inc.
    45. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    46. Giuri, Paola & Mariani, Myriam, 2007. "Inventors and invention processes in Europe: Results from the PatVal-EU survey," Research Policy, Elsevier, vol. 36(8), pages 1105-1106, October.
    47. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    48. Bhaven N. Sampat, 2010. "When Do Applicants Search for Prior Art?," Journal of Law and Economics, University of Chicago Press, vol. 53(2), pages 399-416, May.
    49. Palangkaraya, Alfons & Jensen, Paul H. & Webster, Elizabeth, 2008. "Applicant behaviour in patent examination request lags," Economics Letters, Elsevier, vol. 101(3), pages 243-245, December.
    50. Gaétan de Rassenfosse & Hélène Dernis & Geert Boedt, 2014. "An Introduction to the Patstat Database with Example Queries," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(3), pages 395-408, September.
    51. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    52. Gaétan de Rassenfosse, 2018. "Notice failure revisited: Evidence on the use of virtual patent marking," NBER Working Papers 24288, National Bureau of Economic Research, Inc.
    53. repec:bla:jindec:v:46:y:1998:i:4:p:405-32 is not listed on IDEAS
    54. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    55. Guellec, Dominique & van Pottelsberghe de la Potterie, Bruno, 2007. "The Economics of the European Patent System: IP Policy for Innovation and Competition," OUP Catalogue, Oxford University Press, number 9780199216987.
    56. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
    57. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    58. Jeffrey Kuhn & Kenneth Younge & Alan Marco, 2020. "Patent citations reexamined," RAND Journal of Economics, RAND Corporation, vol. 51(1), pages 109-132, March.
    59. Deepak Hegde & David C. Mowery & Stuart J. H. Graham, 2009. "Pioneering Inventors or Thicket Builders: Which U.S. Firms Use Continuations in Patenting?," Management Science, INFORMS, vol. 55(7), pages 1214-1226, July.
    60. John Carroll, 1953. "An analytical solution for approximating simple structure in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 23-38, March.
    61. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    62. Dietmar Harhoff & Stefan Wagner, 2009. "The Duration of Patent Examination at the European Patent Office," Management Science, INFORMS, vol. 55(12), pages 1969-1984, December.
    63. Jeffrey M. Kuhn & Neil C. Thompson, 2019. "How to Measure and Draw Causal Inferences with Patent Scope," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 26(1), pages 5-38, January.
    64. Cotropia, Christopher A. & Lemley, Mark A. & Sampat, Bhaven, 2013. "Do applicant patent citations matter?," Research Policy, Elsevier, vol. 42(4), pages 844-854.
    65. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    66. Ronald J. Mann & Marian Underweiser, 2012. "A New Look at Patent Quality: Relating Patent Prosecution to Validity," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 9(1), pages 1-32, March.
    67. Gaetan de Rassenfosse & Kyle Higham, 2020. "Wanted: A Standard for Virtual Patent Marking," Working Papers 7, Chair of Science, Technology, and Innovation Policy.
    68. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    69. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.
    70. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    71. Cremers, Katrin, 2004. "Determinants of Patent Litigation in Germany," ZEW Discussion Papers 04-72, ZEW - Leibniz Centre for European Economic Research.
    72. Mariagrazia Squicciarini & Hélène Dernis & Chiara Criscuolo, 2013. "Measuring Patent Quality: Indicators of Technological and Economic Value," OECD Science, Technology and Industry Working Papers 2013/3, OECD Publishing.
    73. Sapsalis, Eleftherios & van Pottelsberghe de la Potterie, Bruno & Navon, Ran, 2006. "Academic versus industry patenting: An in-depth analysis of what determines patent value," Research Policy, Elsevier, vol. 35(10), pages 1631-1645, December.
    74. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2018. "Time to patent at the USPTO: the case of emerging entrepreneurial firms," The Journal of Technology Transfer, Springer, vol. 43(4), pages 923-952, August.
    75. Fischer, Timo & Leidinger, Jan, 2014. "Testing patent value indicators on directly observed patent value—An empirical analysis of Ocean Tomo patent auctions," Research Policy, Elsevier, vol. 43(3), pages 519-529.
    76. Suzanne Scotchmer, 1991. "Standing on the Shoulders of Giants: Cumulative Research and the Patent Law," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 29-41, Winter.
    77. Alberto Galasso & Mark Schankerman, 2015. "Patents and Cumulative Innovation: Causal Evidence from the Courts," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(1), pages 317-369.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    2. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    3. Nicolas van Zeebroeck, 2007. "Patents only live twice: a patent survival analysis in Europe," Working Papers CEB 07-028.RS, ULB -- Universite Libre de Bruxelles.
    4. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    5. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    6. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    7. Leila Tahmooresnejad & Catherine Beaudry, 2019. "Capturing the economic value of triadic patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 127-157, January.
    8. Antoine Dechezleprêtre & Yann Ménière & Myra Mohnen, 2017. "International patent families: from application strategies to statistical indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 793-828, May.
    9. Caviggioli, Federico & De Marco, Antonio & Montobbio, Fabio & Ughetto, Elisa, 2020. "The licensing and selling of inventions by US universities," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    10. Appio, Francesco Paolo & Baglieri, Daniela & Cesaroni, Fabrizio & Spicuzza, Lucia & Donato, Alessia, 2022. "Patent design strategies: Empirical evidence from European patents," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    11. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    12. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012. "The nexus between science and industry: evidence from faculty inventions," The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
    13. Cesare Righi & Davide Cannito & Theodor Vladasel, 2023. "Continuing Patent Applications at the USPTO," Working Papers 1382, Barcelona School of Economics.
    14. Cesare Righi & Davide Cannito & Theodor Vladasel, 2023. "Continuing patent applications at the USPTO," Economics Working Papers 1855, Department of Economics and Business, Universitat Pompeu Fabra.
    15. Sun, Zhen & Wright, Brian D., 2022. "Citations backward and forward: Insights into the patent examiner's role," Research Policy, Elsevier, vol. 51(7).
    16. Righi, Cesare & Cannito, Davide & Vladasel, Theodor, 2023. "Continuing patent applications at the USPTO," Research Policy, Elsevier, vol. 52(4).
    17. Petra Moser & Joerg Ohmstedt & Paul W. Rhode, 2018. "Patent Citations—An Analysis of Quality Differences and Citing Practices in Hybrid Corn," Management Science, INFORMS, vol. 64(4), pages 1926-1940, April.
    18. Capponi, Giovanna & Martinelli, Arianna & Nuvolari, Alessandro, 2022. "Breakthrough innovations and where to find them," Research Policy, Elsevier, vol. 51(1).
    19. Jussi Heikkilä & Michael Verba, 2018. "The role of utility models in patent filing strategies: evidence from European countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 689-719, August.
    20. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "Filing strategies and patent value," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(6), pages 539-561, February.

    More about this item

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:27598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.