IDEAS home Printed from https://ideas.repec.org/p/sek/iefpro/14716418.html
   My bibliography  Save this paper

Analyzing and Predicting R&D Collaboration Networks in the Metaverse Industry

Author

Listed:
  • Juite Wang

    (Graduate Institute of Technology Management, National Chung Hsing University)

Abstract

Innovation ecosystems have become an indispensable element in the growth strategy of firms in various industries. In the birth stage of innovation ecosystem, it is important for firms to assess technological positions of various actors in the innovation ecosystem to support decisions on external R&D collaboration. This research integrates semantic analysis and bibliometric analysis for predicting evolving collaboration patterns and predict collaboration potential. Semantic analysis applies the context-aware deep learning framework based on BERT [14] to analyze unstructured patent data and evaluate technological similarity between individual firms. In addition, biblio-metric analysis uses patent indicators related to technological capabilities and potential technology synergy of individual firms. Then, the deep neural network (DNN) approach is used to learn the relationships between descriptive features and collaboration potentials as target feature. Our findings suggest that the metaverse innovation ecosystem remains in its nascent stages, with the collaborative network still being sparse. The illustrative example reveals that recommended candidate partners often align with or resemble past partners from prior periods. This suggests that the pro-posed deep learning approach is capable of predicting collaborative relationships between various firms.

Suggested Citation

  • Juite Wang, 0000. "Analyzing and Predicting R&D Collaboration Networks in the Metaverse Industry," Proceedings of Economics and Finance Conferences 14716418, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iefpro:14716418
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/international-conference-on-economics-finance-business-lisbon/table-of-content/detail?cid=147&iid=015&rid=16418
    File Function: First version, 0000
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iefpro:14716418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.