IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v82y2010i1d10.1007_s11192-009-0033-y.html
   My bibliography  Save this article

Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display

Author

Listed:
  • Pao-Long Chang

    (Feng Chia University)

  • Chao-Chan Wu

    (National Chiao Tung University
    Chungyu Institute of Technology)

  • Hoang-Jyh Leu

    (Feng Chia University)

Abstract

Carbon nanotube field emission display (CNT-FED) represents both emerging application of nanotechnology and revolutionary invention of display. Therefore, it is an important subject to monitor the states and trends of CNT-FED technology before the next stage of development. The present paper uses patent bibliometric analysis and patent network analysis to monitor the technological trends in the field of CNT-FED. These results firstly reveal the different aspects of patenting activities in the field of CNT-FED. Then, patent network analysis indicates the developing tendency of worldwide FED production based on the synthesis of CNT materials. Furthermore, key technologies of three clusters can be identified as the depositing CNT on substrate, coating phosphor on screen and assembling process for whole device. Finally, emitter material is taken for the key factor in R&D work to improve the efficacy in CNT-FED technology.

Suggested Citation

  • Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
  • Handle: RePEc:spr:scient:v:82:y:2010:i:1:d:10.1007_s11192-009-0033-y
    DOI: 10.1007/s11192-009-0033-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-009-0033-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-009-0033-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    2. Angela Hullmann, 2007. "Measuring and assessing the development of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 739-758, March.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Martin Meyer, 2006. "Are Co-Active Researchers on Top of their Class? An Exploratory Comparison of Inventor-Authors with their Non-Inventing Peers in Nano-Science and Technology," SPRU Working Paper Series 144, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Osmo Kuusi & Martin Meyer, 2007. "Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 759-777, March.
    6. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    7. Karki, M. M. S., 1997. "Patent citation analysis: A policy analysis tool," World Patent Information, Elsevier, vol. 19(4), pages 269-272, December.
    8. Martin Meyer, 2000. "Patent Citations in a Novel Field of Technology — What Can They Tell about Interactions between Emerging Communities of Science and Technology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 48(2), pages 151-178, September.
    9. Gupta, V. K. & Pangannaya, N. B., 2000. "Carbon nanotubes: bibliometric analysis of patents," World Patent Information, Elsevier, vol. 22(3), pages 185-189, September.
    10. Bonaccorsi, Andrea & Thoma, Grid, 2007. "Institutional complementarity and inventive performance in nano science and technology," Research Policy, Elsevier, vol. 36(6), pages 813-831, July.
    11. Corrocher, Nicoletta & Malerba, Franco & Montobbio, Fabio, 2007. "Schumpeterian patterns of innovative activity in the ICT field," Research Policy, Elsevier, vol. 36(3), pages 418-432, April.
    12. Martin S. Meyer, 2001. "Patent citation analysis in a novel field of technology:An exploration of nano-science and nano-technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 163-183, April.
    13. Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    2. Boyack, Kevin W. & Klavans, Richard, 2008. "Measuring science–technology interaction using rare inventor–author names," Journal of Informetrics, Elsevier, vol. 2(3), pages 173-182.
    3. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    4. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    5. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    6. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    7. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    8. Altuntas, Serkan & Dereli, Turkay & Kusiak, Andrew, 2015. "Analysis of patent documents with weighted association rules," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 249-262.
    9. Young-Don Cho & Hoo-Gon Choi, 2013. "Principal parameters affecting R&D exploitation of nanotechnology research: a case for Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 881-899, September.
    10. Beaudry, Catherine & Schiffauerova, Andrea, 2011. "Impacts of collaboration and network indicators on patent quality: The case of Canadian nanotechnology innovation," European Management Journal, Elsevier, vol. 29(5), pages 362-376.
    11. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    12. Stéphane Maraut & Catalina Martínez, 2014. "Identifying author–inventors from Spain: methods and a first insight into results," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 445-476, October.
    13. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    14. Daim, Tugrul & Lai, Kuei Kuei & Yalcin, Haydar & Alsoubie, Fayez & Kumar, Vimal, 2020. "Forecasting technological positioning through technology knowledge redundancy: Patent citation analysis of IoT, cybersecurity, and Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    15. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    16. Giuri, Paola & Mariani, Myriam, 2007. "Inventors and invention processes in Europe: Results from the PatVal-EU survey," Research Policy, Elsevier, vol. 36(8), pages 1105-1106, October.
    17. Chi-Yo Huang & Liang-Chieh Wang & Ying-Ting Kuo & Wei-Ti Huang, 2021. "A Novel Analytic Framework of Technology Mining Using the Main Path Analysis and the Decision-Making Trial and Evaluation Laboratory-Based Analytic Network Process," Mathematics, MDPI, vol. 9(19), pages 1-24, October.
    18. Sadowski, Bert & Nomaler, Onder & Whalley, Jason, 2016. "Technological Diversification of ICT companies into the Internet of things (IoT): A Patent -based Analysis," 27th European Regional ITS Conference, Cambridge (UK) 2016 148701, International Telecommunications Society (ITS).
    19. Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
    20. Shu-Hao Chang, 2018. "A pilot study on the connection between scientific fields and patent classification systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 951-970, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:82:y:2010:i:1:d:10.1007_s11192-009-0033-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.