IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v184y2022ics0167715222000359.html
   My bibliography  Save this article

Nonparametric recursive method for moment generating function kernel-type estimators

Author

Listed:
  • Bouzebda, Salim
  • Slaoui, Yousri

Abstract

In the present paper, we are mainly concerned with the kernel type estimators for the moment generating function. More precisely, we establish the central limit theorem together with the characterization of the bias and the variance for the nonparametric recursive kernel-type estimators for the moment generating function under some mild conditions. Finally, we investigate the performance of the methodology for small samples through a short simulation study.

Suggested Citation

  • Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000359
    DOI: 10.1016/j.spl.2022.109422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yousri Slaoui, 2014. "Bandwidth Selection for Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Journal of Probability and Statistics, Hindawi, vol. 2014, pages 1-11, June.
    2. Jan W. H. Swanepoel, 2021. "The law of the iterated logarithm and maximal smoothing principle for the kernel distribution function estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(1), pages 156-169, January.
    3. Jones, M. C., 1990. "The performance of kernel density functions in kernel distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 129-132, February.
    4. Yousri Slaoui, 2015. "Plug-in bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 483-509, November.
    5. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    6. Yukich, J. E., 1989. "A note on limit theorems for perturbed empirical processes," Stochastic Processes and their Applications, Elsevier, vol. 33(1), pages 163-173, October.
    7. M. Falk, 1983. "Relative efficiency and deficiency of kernel type estimators of smooth distribution functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 37(2), pages 73-83, June.
    8. Salim Bouzebda & Thouria El-hadjali, 2020. "Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(4), pages 864-914, October.
    9. Salim Bouzebda & Issam Elhattab & Boutheina Nemouchi, 2021. "On the uniform-in-bandwidth consistency of the general conditional U-statistics based on the copula representation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(2), pages 321-358, April.
    10. Salim Bouzebda & Boutheina Nemouchi, 2020. "Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(2), pages 452-509, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jun & Song, Jinheng & Yu, Quanfu & Kong, Fan, 2023. "Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Fatimah Alshahrani & Ibrahim M. Almanjahie & Zouaoui Chikr Elmezouar & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Functional Ergodic Time Series Analysis Using Expectile Regression," Mathematics, MDPI, vol. 10(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    2. Soukarieh, Inass & Bouzebda, Salim, 2023. "Renewal type bootstrap for increasing degree U-process of a Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    3. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    4. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    5. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    6. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    7. Ariane Hanebeck & Bernhard Klar, 2021. "Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1229-1247, December.
    8. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    9. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    10. Salim Bouzebda & Boutheina Nemouchi, 2023. "Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 33-88, April.
    11. Daniel Janas, 1993. "A smoothed bootstrap estimator for a studentized sample quantile," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 317-329, June.
    12. Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.
    13. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    14. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    15. Alevizos, Filippos & Bagkavos, Dimitrios & Ioannides, Dimitrios, 2019. "Efficient estimation of a distribution function based on censored data," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 359-364.
    16. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    17. Minglu Ma & Qiang Wang, 2022. "Assessment and Forecast of Green Total Factor Energy Efficiency in the Yellow River Basin—A Perspective Distinguishing the Upper, Middle and Lower Stream," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    18. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    19. Ralescu, Stefan S. & Puri, Madan L., 1996. "Weak convergence of sequences of first passage processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 62(2), pages 327-345, July.
    20. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.