IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i4d10.1007_s00180-021-01178-0.html
   My bibliography  Save this article

New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring

Author

Listed:
  • E. Bothma

    (North-West University)

  • J. S. Allison

    (North-West University)

  • I. J. H. Visagie

    (North-West University)

Abstract

We develop two new classes of tests for the Weibull distribution based on Stein’s method. The proposed tests are applied in the full sample case as well as in the presence of random right censoring. We investigate the finite sample performance of the new tests using a comprehensive Monte Carlo study. In both the absence and presence of censoring, it is found that the newly proposed classes of tests outperform competing tests against the majority of the distributions considered. In the cases where censoring is present we consider various censoring distributions. Some remarks on the asymptotic properties of the proposed tests are included. We present another result of independent interest; a test initially proposed for use with full samples is amended to allow for testing for the Weibull distribution in the presence of censoring. The techniques developed in the paper are illustrated using two practical examples.

Suggested Citation

  • E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01178-0
    DOI: 10.1007/s00180-021-01178-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01178-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01178-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacomini, Raffaella & Politis, Dimitris N. & White, Halbert, 2013. "A Warp-Speed Method For Conducting Monte Carlo Experiments Involving Bootstrap Estimators," Econometric Theory, Cambridge University Press, vol. 29(3), pages 567-589, June.
    2. Simos G. Meintanis & Joseph Ngatchou-Wandji & James Allison, 2018. "Testing for serial independence in vector autoregressive models," Statistical Papers, Springer, vol. 59(4), pages 1379-1410, December.
    3. Ludwig Baringhaus & Norbert Henze, 1991. "A class of consistent tests for exponentiality based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(3), pages 551-564, September.
    4. Simos Meintanis & George Iliopoulos, 2003. "Tests of fit for the Rayleigh distribution based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 137-151, March.
    5. Jiang, R. & Murthy, D.N.P., 2011. "A study of Weibull shape parameter: Properties and significance," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1619-1626.
    6. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    7. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    8. Klar, Bernhard & Meintanis, Simos G., 2005. "Tests for normal mixtures based on the empirical characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 227-242, April.
    9. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    10. Alejandra Cabaña & Adolfo Quiroz, 2005. "Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 417-431, December.
    11. Steffen Betsch & Bruno Ebner, 2019. "A new characterization of the Gamma distribution and associated goodness-of-fit tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 779-806, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    2. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    3. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    4. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    5. Steffen Betsch & Bruno Ebner, 2021. "Fixed point characterizations of continuous univariate probability distributions and their applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 31-59, February.
    6. M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
    7. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    8. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    9. Bruno Ebner & Norbert Henze, 2023. "On the eigenvalues associated with the limit null distribution of the Epps-Pulley test of normality," Statistical Papers, Springer, vol. 64(3), pages 739-752, June.
    10. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    11. Bojana Milošević & Marko Obradović, 2016. "New class of exponentiality tests based on U-empirical Laplace transform," Statistical Papers, Springer, vol. 57(4), pages 977-990, December.
    12. Gerrit Lodewicus Grobler & Elzanie Bothma & James Samuel Allison, 2022. "Testing for the Rayleigh Distribution: A New Test with Comparisons to Tests for Exponentiality Based on Transformed Data," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    13. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    14. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2015. "An approximation to the null distribution of a class of Cramér–von Mises statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 258-272.
    15. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.
    16. Bruno Ebner & Norbert Henze, 2020. "Rejoinder on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 911-913, December.
    17. Žikica Lukić & Bojana Milošević, 2024. "A novel two-sample test within the space of symmetric positive definite matrix distributions and its application in finance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 797-820, October.
    18. M. Cockeran & S. G. Meintanis & L. Santana & J. S. Allison, 2021. "Goodness-of-fit testing of survival models in the presence of Type–II right censoring," Computational Statistics, Springer, vol. 36(2), pages 977-1010, June.
    19. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    20. Meintanis, Simos G., 2008. "A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2496-2503, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01178-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.