IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4356-d978020.html
   My bibliography  Save this article

Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes

Author

Listed:
  • Sultana Didi

    (Department of Statistics, College of Sciences, Qassim University, P.O. Box 6688, Buraydah 51452, Saudi Arabia
    These authors contributed equally to this work.)

  • Salim Bouzebda

    (LMAC (Laboratory of Applied Mathematics of Compiègne), Université de Technologie de Compiégne, 60200 Compiègne, France
    These authors contributed equally to this work.)

Abstract

In this study, we look at the wavelet basis for the nonparametric estimation of density and regression functions for continuous functional stationary processes in Hilbert space. The mean integrated squared error for a small subset is established. We employ a martingale approach to obtain the asymptotic properties of these wavelet estimators. These findings are established under rather broad assumptions. All we assume about the data is that they are ergodic, but beyond that, we make no assumptions. In this paper, the mean integrated squared error findings in the independence or mixing setting were generalized to the ergodic setting. The theoretical results presented in this study are (or will be) valuable resources for various cutting-edge functional data analysis applications. Applications include conditional distribution, conditional quantile, entropy, and curve discrimination.

Suggested Citation

  • Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4356-:d:978020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, George J. & Knight, John L., 1997. "A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model," Econometric Theory, Cambridge University Press, vol. 13(5), pages 615-645, October.
    2. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    3. Anne Leucht & Michael Neumann, 2013. "Degenerate $$U$$ - and $$V$$ -statistics under ergodicity: asymptotics, bootstrap and applications in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 349-386, April.
    4. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Kerkyacharian, G. & Picard, D., 1992. "Density estimation in Besov spaces," Statistics & Probability Letters, Elsevier, vol. 13(1), pages 15-24, January.
    6. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    7. Salim Bouzebda & Sultana Didi, 2017. "Additive regression model for stationary and ergodic continuous time processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(5), pages 2454-2493, March.
    8. Th. Gasser & P. Hall & B. Presnell, 1998. "Nonparametric estimation of the mode of a distribution of random curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 681-691.
    9. Sultana DIDI & Ahoud AL HARBY & Salim BOUZEBDA, 2022. "Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time," Mathematics, MDPI, vol. 10(19), pages 1-33, September.
    10. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    11. Salim Bouzebda & Thouria El-hadjali, 2020. "Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(4), pages 864-914, October.
    12. Soumaya Allaoui & Salim Bouzebda & Christophe Chesneau & Jicheng Liu, 2021. "Uniform almost sure convergence and asymptotic distribution of the wavelet-based estimators of partial derivatives of multivariate density function under weak dependence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(2), pages 170-196, April.
    13. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    14. D. Blanke & B. Pumo, 2003. "Optimal sampling for density estimation in continuous time," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 1-23, January.
    15. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    16. Salim Bouzebda & Sultana Didi, 2017. "Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: Asymptotic results," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1367-1406, February.
    17. Salim Bouzebda & Sultana Didi, 2022. "Some results about kernel estimators for function derivatives based on stationary and ergodic continuous time processes with applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(12), pages 3886-3933, May.
    18. Idir Ouassou & Mustapha Rachdi, 2012. "Regression operator estimation by delta-sequences method for functional data and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 451-465, October.
    19. Laib, Naâmane & Louani, Djamal, 2010. "Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2266-2281, November.
    20. Vieu, Philippe, 2018. "On dimension reduction models for functional data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 134-138.
    21. Salim Bouzebda & Issam Elhattab & Boutheina Nemouchi, 2021. "On the uniform-in-bandwidth consistency of the general conditional U-statistics based on the copula representation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(2), pages 321-358, April.
    22. Salim Bouzebda & Boutheina Nemouchi, 2020. "Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(2), pages 452-509, April.
    23. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    24. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    2. Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.
    3. Salim Bouzebda & Boutheina Nemouchi, 2023. "Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 33-88, April.
    4. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    6. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    7. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    8. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
    9. Soukarieh, Inass & Bouzebda, Salim, 2023. "Renewal type bootstrap for increasing degree U-process of a Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    10. Sultana DIDI & Ahoud AL HARBY & Salim BOUZEBDA, 2022. "Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time," Mathematics, MDPI, vol. 10(19), pages 1-33, September.
    11. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    12. Salim Bouzebda, 2024. "Limit Theorems in the Nonparametric Conditional Single-Index U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 12(13), pages 1-81, June.
    13. Chaouch, Mohamed & Laïb, Naâmane, 2019. "Optimal asymptotic MSE of kernel regression estimate for continuous time processes with missing at random response," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    14. Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
    15. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Chen, Di-Rong & Cheng, Kun & Liu, Chao, 2022. "Framelet block thresholding estimator for sparse functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    17. Laïb, Naâmane & Louani, Djamal, 2019. "Asymptotic normality of kernel density function estimator from continuous time stationary and dependent processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 187-196.
    18. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    19. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    20. Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4356-:d:978020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.