IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i3d10.1007_s00184-020-00795-x.html
   My bibliography  Save this article

A new test of multivariate normality by a double estimation in a characterizing PDE

Author

Listed:
  • Philip Dörr

    (Institut für Mathematische Stochastik, Universitätsplatz 2)

  • Bruno Ebner

    (Karlsruhe Institute of Technology (KIT))

  • Norbert Henze

    (Karlsruhe Institute of Technology (KIT))

Abstract

This paper deals with testing for nondegenerate normality of a d-variate random vector X based on a random sample $$X_1,\ldots ,X_n$$ X 1 , … , X n of X. The rationale of the test is that the characteristic function $$\psi (t) = \exp (-\Vert t\Vert ^2/2)$$ ψ ( t ) = exp ( - ‖ t ‖ 2 / 2 ) of the standard normal distribution in $${\mathbb {R}}^d$$ R d is the only solution of the partial differential equation $$\varDelta f(t) = (\Vert t\Vert ^2-d)f(t)$$ Δ f ( t ) = ( ‖ t ‖ 2 - d ) f ( t ) , $$t \in {\mathbb {R}}^d$$ t ∈ R d , subject to the condition $$f(0) = 1$$ f ( 0 ) = 1 , where $$\varDelta $$ Δ denotes the Laplace operator. In contrast to a recent approach that bases a test for multivariate normality on the difference $$\varDelta \psi _n(t)-(\Vert t\Vert ^2-d)\psi (t)$$ Δ ψ n ( t ) - ( ‖ t ‖ 2 - d ) ψ ( t ) , where $$\psi _n(t)$$ ψ n ( t ) is the empirical characteristic function of suitably scaled residuals of $$X_1,\ldots ,X_n$$ X 1 , … , X n , we consider a weighted $$L^2$$ L 2 -statistic that employs $$\varDelta \psi _n(t) -(\Vert t\Vert ^2-d)\psi _n(t)$$ Δ ψ n ( t ) - ( ‖ t ‖ 2 - d ) ψ n ( t ) . We derive asymptotic properties of the test under the null hypothesis and alternatives. The test is affine invariant and consistent against general alternatives, and it exhibits high power when compared with prominent competitors. The main difference between the procedures are theoretically driven by different covariance kernels of the Gaussian limiting processes, which has considerable effect on robustness with respect to the choice of the tuning parameter in the weight function.

Suggested Citation

  • Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:3:d:10.1007_s00184-020-00795-x
    DOI: 10.1007/s00184-020-00795-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-020-00795-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-020-00795-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baringhaus, L. & Henze, N., 1991. "Limit distributions for measures of multivariate skewness and kurtosis based on projections," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 51-69, July.
    2. Ludwig Baringhaus & Norbert Henze, 1991. "A class of consistent tests for exponentiality based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(3), pages 551-564, September.
    3. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    4. Henze, Norbert, 1997. "Limit laws for multivariate skewness in the sense of Móri, Rohatgi and Székely," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 299-307, May.
    5. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    6. Simos Meintanis & George Iliopoulos, 2003. "Tests of fit for the Rayleigh distribution based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 137-151, March.
    7. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    8. Simos G. Meintanis & Zdeněk Hlávka, 2010. "Goodness‐of‐Fit Tests for Bivariate and Multivariate Skew‐Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 701-714, December.
    9. Henze, Norbert & Jiménez–Gamero, M. Dolores & Meintanis, Simos G., 2019. "Characterizations Of Multinormality And Corresponding Tests Of Fit, Including For Garch Models," Econometric Theory, Cambridge University Press, vol. 35(3), pages 510-546, June.
    10. Gneiting, Tilmann & Kleiber, William & Schlather, Martin, 2010. "Matérn Cross-Covariance Functions for Multivariate Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1167-1177.
    11. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    12. Norbert Henze & Bernhard Klar, 2002. "Goodness-of-Fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 425-444, June.
    13. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    14. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    2. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    3. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    4. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    5. M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
    6. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    7. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    8. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    9. Bruno Ebner & Norbert Henze, 2023. "On the eigenvalues associated with the limit null distribution of the Epps-Pulley test of normality," Statistical Papers, Springer, vol. 64(3), pages 739-752, June.
    10. Bojana Milošević & Marko Obradović, 2016. "New class of exponentiality tests based on U-empirical Laplace transform," Statistical Papers, Springer, vol. 57(4), pages 977-990, December.
    11. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    12. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    13. Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
    14. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    15. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    16. Steffen Betsch & Bruno Ebner, 2019. "A new characterization of the Gamma distribution and associated goodness-of-fit tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 779-806, October.
    17. Nora Gürtler & Norbert Henze, 2000. "Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 267-286, June.
    18. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    19. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    20. Baringhaus, Ludwig & Taherizadeh, Fatemeh, 2010. "Empirical Hankel transforms and its applications to goodness-of-fit tests," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1445-1457, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:3:d:10.1007_s00184-020-00795-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.