IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v69y2015i4p483-509.html
   My bibliography  Save this article

Plug-in bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method

Author

Listed:
  • Yousri Slaoui

Abstract

type="main" xml:id="stan12069-abs-0001"> In this paper, we propose an automatic selection of the bandwidth of the recursive kernel estimators of a regression function defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and the stepsize which minimize the mean weighted integrated squared error, the recursive estimator will be better than the non-recursive one for small sample setting in terms of estimation error and computational costs. We corroborated these theoretical results through simulation study and a real dataset.

Suggested Citation

  • Yousri Slaoui, 2015. "Plug-in bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 483-509, November.
  • Handle: RePEc:bla:stanee:v:69:y:2015:i:4:p:483-509
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/stan.12069
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    2. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    3. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    4. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    5. Yousri Slaoui, 2018. "Data-Driven Bandwidth Selection for Recursive Kernel Density Estimators Under Double Truncation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 341-368, November.
    6. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    7. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    2. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    3. Yang Zu, 2015. "A Note on the Asymptotic Normality of the Kernel Deconvolution Density Estimator with Logarithmic Chi-Square Noise," Econometrics, MDPI, vol. 3(3), pages 1-16, July.
    4. Ben-Moshe, Dan, 2018. "Identification Of Joint Distributions In Dependent Factor Models," Econometric Theory, Cambridge University Press, vol. 34(1), pages 134-165, February.
    5. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    6. Parmeter, Christopher F., 2008. "The effect of measurement error on the estimated shape of the world distribution of income," Economics Letters, Elsevier, vol. 100(3), pages 373-376, September.
    7. DongHyuk Lee & Soumendra N. Lahiri & Samiran Sinha, 2020. "A test of homogeneity of distributions when observations are subject to measurement errors," Biometrics, The International Biometric Society, vol. 76(3), pages 821-833, September.
    8. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    9. Holzmann, Hajo & Bissantz, Nicolai & Munk, Axel, 2007. "Density testing in a contaminated sample," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 57-75, January.
    10. Élie Youndjé & Martin Wells, 2008. "Optimal bandwidth selection for multivariate kernel deconvolution density estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 138-162, May.
    11. Kengo Kato & Yuya Sasaki & Takuya Ura, 2018. "Inference based on Kotlarski's Identity," Papers 1808.09375, arXiv.org, revised Sep 2019.
    12. Gong, Xiaodong & Gao, Jiti, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," IZA Discussion Papers 9265, Institute of Labor Economics (IZA).
    13. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    14. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    15. Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
    16. Botosaru, Irene & Sasaki, Yuya, 2018. "Nonparametric heteroskedasticity in persistent panel processes: An application to earnings dynamics," Journal of Econometrics, Elsevier, vol. 203(2), pages 283-296.
    17. Marcus Groß & Ulrich Rendtel & Timo Schmid & Sebastian Schmon & Nikos Tzavidis, 2017. "Estimating the density of ethnic minorities and aged people in Berlin: multivariate kernel density estimation applied to sensitive georeferenced administrative data protected via measurement error," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 161-183, January.
    18. Slaoui, Yousri, 2019. "Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 494-511.
    19. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    20. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:69:y:2015:i:4:p:483-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.