IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3919-d950049.html
   My bibliography  Save this article

Functional Ergodic Time Series Analysis Using Expectile Regression

Author

Listed:
  • Fatimah Alshahrani

    (Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Ibrahim M. Almanjahie

    (Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia
    Statistical Research and Studies Support Unit, King Khalid University, Abha 62529, Saudi Arabia)

  • Zouaoui Chikr Elmezouar

    (Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia)

  • Zoulikha Kaid

    (Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia)

  • Ali Laksaci

    (Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia)

  • Mustapha Rachdi

    (Laboratory AGEIS, University of Grenoble Alpes (France), EA 7407, AGIM Team, UFR SHS, BP. 47, CEDEX 09, F38040 Grenoble, France)

Abstract

In this article, we study the problem of the recursive estimator of the expectile regression of a scalar variable Y given a random variable X that belongs in functional space. We construct a new estimator and study the asymptotic properties over a general functional time structure. Precisely, the strong consistency of this estimator is established, considering that the sampled observations are taken from an ergodic functional process. Next, a simulation experiment is conducted to highlight the great impact of the constructed estimator as well as the ergodic functional time series data. Finally, a real data analysis is used to demonstrate the superiority of the constructed estimator.

Suggested Citation

  • Fatimah Alshahrani & Ibrahim M. Almanjahie & Zouaoui Chikr Elmezouar & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Functional Ergodic Time Series Analysis Using Expectile Regression," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3919-:d:950049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Laksaci & Salah Khardani & Sihem Semmar, 2022. "Semi-recursive kernel conditional density estimators under random censorship and dependent data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(7), pages 2116-2138, April.
    2. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    3. Bellini, Fabio & Bignozzi, Valeria & Puccetti, Giovanni, 2018. "Conditional expectiles, time consistency and mixture convexity properties," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 117-123.
    4. Feng, Yuanhua & Beran, Jan & Yu, Keming, 2006. "Modelling financial time series with SEMIFAR-GARCH model," MPRA Paper 1593, University Library of Munich, Germany.
    5. Amiri, Aboubacar & Crambes, Christophe & Thiam, Baba, 2014. "Recursive estimation of nonparametric regression with functional covariate," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 154-172.
    6. Fatima Benziadi & Ali Laksaci & Fethallah Tebboune, 2016. "Recursive kernel estimate of the conditional quantile for functional ergodic data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(11), pages 3097-3113, June.
    7. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    8. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    9. Belkacem Abdous & Bruno Remillard, 1995. "Relating quantiles and expectiles under weighted-symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 371-384, June.
    10. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    11. Jones, M. C., 1994. "Expectiles and M-quantiles are quantiles," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 149-153, May.
    12. Stéphane Girard & Gilles Claude Stupfler & Antoine Usseglio-Carleve, 2021. "Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models," Post-Print hal-03306230, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tzung Hsuen Khoo & Dharini Pathmanathan & Sophie Dabo-Niang, 2023. "Spatial Autocorrelation of Global Stock Exchanges Using Functional Areal Spatial Principal Component Analysis," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    2. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    2. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    3. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    4. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    5. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    6. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    7. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    8. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE), revised May 2024.
    9. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    10. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "An expectile computation cookbook," TSE Working Papers 23-1458, Toulouse School of Economics (TSE).
    11. C. Adam & I. Gijbels, 2022. "Local polynomial expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 341-378, April.
    12. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    13. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles," TSE Working Papers 23-1444, Toulouse School of Economics (TSE), revised Nov 2023.
    14. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    15. Bignozzi, Valeria & Merlo, Luca & Petrella, Lea, 2024. "Inter-order relations between equivalence for Lp-quantiles of the Student's t distribution," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 44-50.
    16. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    17. Aboubacar Amiri & Baba Thiam, 2018. "Regression estimation by local polynomial fitting for multivariate data streams," Statistical Papers, Springer, vol. 59(2), pages 813-843, June.
    18. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    19. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    20. repec:hum:wpaper:sfb649dp2017-027 is not listed on IDEAS
    21. Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3919-:d:950049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.